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Abstract. Today, a variety of heuristic approaches are available to the operations research practitioner. 
One methodology that has a strong intuitive appeal, a prominent empirical track record, and is trivial 
to efficiently implement on parallel processors is GRASP (Greedy Randomized Adaptive Search 
Procedures). GRASP is an iterative randomized sampling technique in which each iteration provides a 
solution to the problem at hand. The incumbent solution over all GRASP iterations is kept as the final 
result. There are two phases within each GRASP iteration: the first intelligently constructs an initial 
solution via an adaptive randomized greedy function; the second applies a local search procedure 
to the constructed solution in hope of finding an improvement. In this paper, we define the various 
components comprising a GRASP and demonstrate, step by step, how to develop such heuristics 
for combinatorial optimization problems. Intuitive justifications for the observed empirical behavior 
of the methodology are discussed. The paper concludes with a brief literature review of GRASP 
implementations and mentions two industrial applications. 
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1. Introduction 

Optimization problems that involve a large but finite number  of  alternatives often 
arise in industry, government  and science. Common examples include designing 
efficient te lecommunicat ion networks, scheduling operations in a semiconductor 
manufacturing plant, designing effective school zoning, locating strategic energy 
reserves, routing delivery vehicles, troop deployment,  airline crew scheduling, and 
designing a large experiment. In all o f  these examples, it is theoretically possible 
to enumerate all combinations of  solutions and evaluate each with respect to the 
stated objective. The ones that provide the most favorable outcome are deemed 
optimal. However,  f rom a practical perspective, it is infeasible to follow such a 
strategy of  complete enumeration because the number of  combinations often grows 
exponential ly with the size of  problem. 

Much work has been done over the last 40 years to develop optimal seeking 
methods that do not explicitly require an examination of  each alternative. This 
research has given rise to the field of  combinatorial optimization (see Papadimitri- 
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p r o c e d u r e  grasp () 
1 Input Ins tance  () ; 
2 for GRASP stopping criterion not satisfied --+ 
3 Construct GreedyRandomizedSolut ion (Solut ion) ; 
4 LocalSear ch (Solut ion) ; 
5 Updat eSolut ion (Solut ion, BestSolutionFound) ; 
6 rof; 
7 re turn(Bes t  Solut ionFound) 
end  grasp; 

Fig. 1. A generic GRASP pseudo-code 

ou and Steiglitz [32]), and an increasing capability to solve ever larger real-world 
problems. Notable successes have been reported for linear programming [23], spe- 
cialized versions of the traveling salesman problem [30] and bus driver scheduling 
[16], to name a few. 

Nevertheless, most problems found in industry and government are either com- 
putationally intractable by their nature, or sufficiently large so as to preclude the use 
of exact algorithms. In such cases, heuristic methods are usually employed to find 
good, but not necessarily optimal solutions. The effectiveness of these methods 
depends upon their ability to adapt to a particular realization, avoid entrapment 
at local optima, and exploit the basic structure of the problem, such as a net- 
work or a natural ordering among its components. Furthermore, restart procedures, 
controlled randomization, efficient data structures, and preprocessing are also ben- 
eficial. Building on these notions, various heuristic search techniques have been 
developed that have demonstrably improved our ability to obtain good solutions to 
difficult combinatorial optimization problems. The most promising of such tech- 
niques include simulated annealing [25], tabu search [19, 20], genetic algorithms 
[21] and GRASP (Greedy Randomized Adaptive Search Procedures). 

In this paper, we define the various components comprising a GRASP and demon- 
strate, step by step, how to develop such heuristics for combinatorial optimization 
problems. Intuitive justifications for the observed empirical behavior of the method- 
ology will be discussed. The paper concludes with a brief literature review of GRASP 
and mentions two industrial applications. 

A GRASP is an iterative process, with each GRASP iteration consisting of two 
phases, a construction phase and a local search phase. The best overall solution 
is kept as the result. A generic GRASP pseudo-code is given in Figure 1. Line 1 
of the pseudo-code corresponds to problem input. The GRASP iterations take place 
in lines 2-6, and terminate when some termination criterion, such as maximum 
number of iterations have occured or solution sought has been found, is satisfied. 
Line 3 is the GRASP construction phase, while line 4 is the local search phase. If an 
improved solution is found, the incumbent is updated in line 5. We next present a 
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p r o c e d u r e  ConstructGreedyRandomizedSolution(Solution) 
I Solution = {}; 
2 for Solution construction not done --+ 
3 MakeRCL(RCL); 
4 s = SelectElementAtRandom(KCL); 
5 Solution = Solution U {s}; 
6 AdaptGreedyFunction(s); 

7 r o t  
end ConstructGreedyRandomizedSolution; 

Fig. 2. GRASP construction phase pseudo-code. 

p r o c e d u r e  local(P,N(P),s) 
1 for s not locally optimal 
2 Find a better solution t 6 N(s); 
3 Let s = t; 
4 rof; 
5 re turn(s  as local optimal for P)  
end loca l ;  

Fig. 3. GRASP local search phase. 

high-level description of these two phases. In the following section we delve into 
more detail. 

In the construction phase, a feasible solution is iteratively constructed, one 
element at a time. At each construction iteration, the choice of the next element 
to be added is determined by ordering all elements in a candidate list with respect 
to a greedy function. This function measures the (myopic) benefit of selecting 
each element. The heuristic is adaptive because the benefits associated with every 
element are updated at each iteration of the construction phase to reflect the changes 
brought on by the selection of the previous element. The probabilistic component 
of a GRASP is characterized by randomly choosing one of the best candidates in the 
list, but not necessarily the top candidate. The list of best candidates is called the 
restricted candidate list (RCL). This choice technique allows for different solutions 
to be obtained at each GRASP iteration, but does not necessarily compromise the 
power of the adaptive greedy component of the method. Figure 2 displays pseudo- 
code for the construction phase of GRASP. The solution to be contructed is initialized 
in line 1 of the pseudo-code. The loop from line 2 to 7 is repeated until the solution 
is constructed. In line 3, the restricted candidate list is built. A candidate from the 
list is selected, at random, in line 4 and is added to the solution in line 5. The effect 
of the selected solution element ~ on the benefits associated with every element is 
taken into consideration in line 6, where the greedy function is adapted. 
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size 
RCL 

1 

2 
4 
8 
16 

32 

64 
128 
256 

solution values 
3116 3117 3118 3119 3120 3 1 2 1  3122 3123 3124 3125 3126 

1 3 
4 18 

4 36 
5 35 

1 50 
16 282 

72 635 
177 1213 

269 1716 
304 1980 

100000 

151 6053 93796 
75 1676 17744  80503 2 

750 6566 31257 61336 35 5 
2485 13274 38329 45547 42 25 

4196 16455 37937 40479 164 58 

5933 19553 37666 34832 441 163 
7324 21140 37186 34832 679 281 
7867 21792 36725 29027 1575 689 

Fig. 4. Sample distributions of GRASP iteration solutions. 

size RCL 1 1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 1  
mean (3120 +) 4 . 0 0  3 . 9 4  3 . 7 9  3 . 5 3  3 . 2 7  3 . 1 4  3 . 0 0  2 . 9 1  2.89 

Fig. 5. Means of sample distributions of GRASP iteration solutions. 

As is the case for many deterministic methods, the solutions generated by a 
GRASP construction are not guaranteed to be locally optimal with respect to simple 
neighborhood definitions. Hence, it is almost always beneficial to apply a local 
search to attempt to improve each constructed solution. A local search algorithm 
works in an iterative fashion by successively replacing the current solution by a 
better solution in the neighborhood of the current solution. It terminates when no 
better solution is found in the neighborhood. The neighborhood structure N for 
a problem P relates a solution s of the problem to a subset of solutions N(~). A 
solution ~ is said to be locally optimal if there is no better solution in N(s). Given 
a neighborhood structure N, a local search algorithm has the general form as stated 
in Figure 3. The key to success for a local search algorithm consists of the suitable 
choice of a neighborhood structure, efficient neighborhood search techniques, and 
the starting solution. 

While such local optimization procedures can require exponential time from an 
arbitrary starting point, empirically their efficiency significantly improves as the 
initial solution improves. Through the use of customized data structures and careful 
implementation, an efficient construction phase can be created which produces 
good initial solutions for efficient local search. The result is that often many 
GRASP solutions are generated in the same amount of time required for the local 
optimization procedure to converge from a single random start. Furthermore, the 
best of these GRASP solutions is generally significantly better than the single solution 
obtained from a random starting point. 

It is difficult to formally analyze the quality of solution values found by using 
the GRASP methodology. However, there is an intuitive justification that views 
GRASP as a repetitive sampling technique. Each GRASP iteration produces a sample 
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solution from an unknown distribution of all obtainable results. The mean and 
variance of the distribution are functions of the restrictive nature of the candidate 
list. For example, if the cardinality of the restricted candidate list is limited to one, 
then only one solution will be produced and the variance of the distribution will 
be zero. Given an effective greedy function, the mean solution value in this case 
should be good, but probably suboptimal. If a less restrictive cardinality limit is 
imposed, many different solutions will be produced implying a larger variance. 
Since the greedy function is more compromised in this case, the mean solution 
value should degrade. Intuitively, however, by order statistics and the fact that the 
samples are randomly produced, the best value found should outperform the mean 
value. Indeed, often the best solutions sampled are optimal. Figures 4-5 show 
results of a simulation experiment that illustrates this intuition. The figures show, 
for different cardinality restriction values (candidate list size = 1, 2, . . . ,  256), the 
distribution of observed solution values (3116, 3117, . . . ,  3126) obtained at each 
iteration, for 100,000 replications of GRASP iterations. The simulation uses the code 
GRASP-B, of Resende and Feo [34], to solve satisfiability instance s s a 7  552 - 16 0 
of the 2nd DIMACS Algorithm Implementation Challenge [22]. In the optimization 
problem, one wants to maximize the number of satisfied clauses. Problem instance 
s s a 7 5 5 2 - 1 6 0  is satisfiable and has 1391 variables, 3126 clauses, and 7025 
literals. Consequently, the optimal solution value is 3216. The simulation shows 
that the greedy solution (IRCLI = 1) has the highest mean solution value (3124.00) 
and the smallest variance (zero). As the restriction is increasingly relaxed, the 
mean values decrease and the variances increase. With the increase in variance, 
the number of samples drawn from the set of optimal solutions also increases. No 
optimal solution is drawn for [RCL I = 1,2, and 4. Five are drawn for IRCLI = 8, 
and as many as 689 are drawn for the largest list size of 256. 

An especially appealing characteristic of GRASP is the ease with which it can 
be implemented. Few parameters need to be set and tuned (candidate list size and 
number of GRASP iterations), and therefore, development can focus on implement- 
ing efficient data structures to assure quick GRASP iterations. Finally, GRASP can 
be trivially implemented on a parallel processor in an MIMD environment. Each 
processor can be initialized with its own copy of the procedure, the instance data, 
and an independent random number sequence. The GRASP iterations are then per- 
formed in parallel with only a single global variable required to store the best 
solution found over all processors. 

The remainder of the this paper is organized as follows. In Section 2, the 
GRASP methodology is described in detail. Several GRASP implementations are 
summarized in Section 3. A summary and discussion of future work are presented 
in Section 4. 
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P1 ~ ~ P4 
�9 �9 1 

�9 �9 2 

�9 �9 3 

Fig. 6. Set covering problem example. 

2. Methodology 

In this section, we describe a general framework for GRASP, using two classical 
combinatorial optimization problems (set covering and the maximum independent 
set) to illustrate the various components of the methodology. We define the two 
problems and describe the two phases of GRASP with respect to each problem 
class. Examples are given for the procedures described. We conclude the section 
by describing computational testing of GRASP codes for set covering and maximum 
independent set. 

2.1. PROBLEM DEFINITIONS 

We begin by defining the two combinatorial optimization problems used in this 
section to illustrate the phases of a GRASP: the set covering problem and the 
maximum independent set problem. 

2.1.1. Set covering problem 

Given n finite sets P1, P2, �9 �9 P~, let 

n 

I =  U Pi= {1,2, . . . ,ra} 
i=1 

and J = { 1 , 2 , . . . ,  n}. A set J* C_ J is a cover if Uiea, Pi = I.  In the set covering 
problem we want to find the minimum cardinality cover. 

Consider the example in Figure 6 where four sets P1 = {1, 2}, P2 = {1, 3}, 
P3 = {2}, and P4 = {3} are given. There are 7 valid covers for this exam- 
ple: {P1, P2, P3, P4}, {P1, P2, P3}, {P1, P2, P4}, {P2, P3, P4}, {P1, P2}, {P1, P4}, 
{P2, P3}. The optimal covers, of size 2, are: {P1, P2}, {P1, P4} and {Pz, P3}. 

2.1.2. Maximum independent set problem 

Given a graph G = (V, E)  where V is the vertex set and E is the edge set of G, an 
independent set (or vertex packing or stable set) is a set of vertices whose elements 
are pairwise nonadjacent. In the maximum independent set problem we want an 
independent set of maximum cardinality. 
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"b 

c . d  

Fig. 7. Independent set problem example. 

Consider the example in Figure 7 where a graph with four vertices {a, b, c, d} 
and three edges { (a, b ), (a, c ), (c, d) } is given. 

The independent sets for this example are {a, d}, {b, c}, {a}, {b}, {c} and {d}. 
There are two maximum independent sets: {a, d} and {b, c}. 

2.2. GRASP CONSTRUCTION PHASE 

During the construction phase of GRASP a solution is built one element at a time, 
with each element selected at random from a list of candidates determined by an 
adaptive greedy function. In this subsection, we illustrate the construction phase 
by defining adaptive greedy functions and candidate list restriction mechanisms 
for the two examples described above. 

2.2.1. Set covering problem 

A set Pi is said to cover the set F c_ I if Pi N F -- I ~. A greedy choice in 
the set covering problem is to select the set P~ that covers the largest number of 
yet uncovered elements of set I .  Let us use this as the adaptive greedy function to 
construct a solution for the problem. Instead of making the greedy choice, we allow 
a set to be in the restricted candidate list if the number of yet uncovered elements 
that would be covered if that set were to be chosen is within some percentage (c~) 
of the number covered by a greedy choice. This type of candidate list limitation is 
referred to as value restriction. Similarly, we can limit the size of the candidate list 
by including only the/3 best elements. This limitation is referred to as a cardinality 
restriction. Note that one may apply both types of restrictions simultaneously to 
form a candidate list. 

Figure 8 illustrates, with pseudo-code, a value-restricted construction phase 
for the set covering problem. The procedure takes as input the dimension n, sets 
P1 , . . . ,  P~, parameter c~, and returns the cover J*. Steps 1 and 2 initialize sets 
pO . . . ,  pO and J*. Steps 4-8 are repeated until all sets pO j = 1 , . . . ,  n, are 

empty. In step 4, the largest cardinality F of sets pj0 j = 1 , . . . ,  n, is determined. 
This cardinality is used in step 5, where the restricted set 7 9 of candidates is built. 
An element k of set 79 is selected at random in step 6 and is added to the cover 
J* in step 7. In step 8, the greedy function is adjusted, i.e. elements of set po are 
removed from each set pj0, j = 1 , . . . ,  n. 
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p r o c e d u r e  ConstructCover(n, P1, P2, . . . ,  Pn, a, J*) 
1 for j = 1 , . . . ,  n ~ po := pj rof; 
2 J* := 9; 
3 for po # r = 1,. . .  ,n --* 
4 f' := max{IP~ : 1 _< j _< n}; 
5 p : =  {j : IPYl > a - r , 1  < j < n}; 
6 Select k at random from :P; 
7 J* := J* U {k}; 
8 for j = 1 , . . . ,  n --+ pO := pj0 \ pO rof; 
9 rof; 
end ConstructCover; 

Fig. 8. Construction phase pseudo-code: set coveting. 

P~ /'2 /'3 /'4 /'5 P6 P7 P8 
�9 1 

�9 �9 �9 2 

�9 �9 �9 �9 �9 3 

�9 �9 �9 �9 �9 4 

�9 �9 5 

2 1 2 3 3 3 2 i 

Fig. 9. Set coveting example: construction phase. 

Consider the example in Figure 9 and let ~ = 40 percent. The numbers on the 
bottom row are the number of yet uncovered elements that would become covered 
if the corresponding set on the top row of the figure were to be selected. The greedy 
choices, P4, Ps, or P6 would therefore cover 3 elements. Since c~ = 40 percent, the 
value restricted candidate list RCL = {P1,/94, Ps, P6, PT}. Suppose, at random, 
that set P5 is selected. Then elements 3,4 and 5 are covered and we are left with 
the situation depicted in Figure 10, with RCL = {P3, P4, P6, PT}. 

Next, choosing P3 would leave the remaining choice as P6, and the resulting 
constructed cover would be J* = {P3, Ps, P6}, of size 3. On the other hand, if P6 
had initially been chosen in place of Ps, we would be in the situation depicted in 

/'1 /'2 P3 /'4 P5 P6 P7 P8 
�9 1 

�9 �9 �9 2 

3 
4 
5 

0 0 1 1 0 1 1 0 

Fig. 10. Set coveting example: construction phase. 
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~ P3 ~ ~ P6 P7 t:'8 
1 

�9 �9 �9 2 

�9 �9 �9 �9 �9 3 

4 
5 

1 

Fig. 11. 

1 1 2 1 0 2 0 

Set covering example: construction phase. 

Figure 11, where choosing P4 results in a smaller (optimal) cover J* = {P4, P6} 
of size 2. 

2.2.2. Maximum independent set problem 

In the case of the maximum independent set problem, a GRASP builds an independent 
set, one vertex at a time, guided by an adaptive greedy function. Let S* denote the 
independent set to be constructed. The GRASP begins with S* = {0}. Let k = 0, 
Vk = V and Ek = E.  A plausible greedy choice for the maximum independent set 
is to select the vertex with the smallest degree with respect to the graph induced by 
the yet unselected vertices that are not adjacent to any previously selected vertex. 
Let d, denote the degree of vertex v in graph Gk = (V~, Ek). The greedy choice is 
to select a vertex with the smallest degree. Instead of selecting the greedy choice, 
the GRASP construction phase builds a restricted candidate list of all vertices having 
small degree, but not necessarily the smallest degree. Let I" be the smallest degree 
of vertices in Vk, i.e., 

F = min{d~ Iv E Vk), 

and let a > 0 be the restricted candidate parameter. The value restricted candidate 
list is 

RCL = {v E Vk I < (1 + 

From the candidate list a vertex, say v, is selected at random and placed in the 
independent set, i.e., S* +-- S* u {v}. 

The greedy function is adaptive, because with the addition of each new vertex 
in the independent set, Gk+l is different from Gk, and consequently vertex degrees 
change. Gk+l is defined as follows: Vk+l = Vk \ {v} \ adj(v), where adj(v) is the 
set of vertices in Gk adjacent to v; Ek+l = E \ {(% w) [ U E S* or w E S*}. 

Consider the example of Figure 12. Let a -- 0.6 in this case. Vertices {a, b, e, d, f}  
each have degree 2, while vertex e has degree 4. Hence, the value restricted can- 
didate list RCL = {a, b, r d, f} .  Suppose vertex a were to be selected at random 
from the RCL. The initial independent set would be S* = {a} and the resulting 
graph G1 would be the one depicted in Figure 13. In graph G1, all vertices have 
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b 

e 
Fig. 12. Maximum independent set: construction phase. 

e 

Fig. 13. Maximum independent set: construction phase. 

identical degree and consequently RCL = {c, e, f}.  If vertex c were to be selected, 
the resulting independent set of size 2 would be S* = {a, c}. If instead, b was 
initially chosen (S* = {b}), the resulting graph G1 would be the one depicted in 
Figure 14. In that case, the restricted candidate list RCL = {c, d, f}.  Selecting 
vertex d and then vertex e results in an optimal independent set S* = {b, c, d}. 

2.3.  G R A S P  LOCAL SEARCH PHASE 

We now turn our attention to the local search phase for each of the two examples. 
We begin with a local search procedure for the set coveting problem and then 
describe a procedure for maximum independent set. 

2.3.1. Set covering problem 

In the set coveting problem, define a k, p-exchange as follows: For all k-tuples in 
a cover J*, if possible, exchange the k-tuple with a p-tuple (p < k) not in J*. 

d*O 

Fig. 14. 

1Ic 
1 f 

Maximum independent set: construction phase. 
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/'2 /'3 ~ ~ 

Fig. 15. 
T T T 

/:'7 Ps 
1 

�9 2 

�9 3 
�9 4 

5 

Set coveting: local search phase (cover {P3, Ps, P6}). 

P~ /'2 Pa P4 /:'5 P6 /'7 P8 
�9 1 

�9 �9 �9 2 

�9 �9 �9 �9 �9 3 

�9 �9 �9 �9 �9 4 

�9 �9 5 

T T 
Fig. 16. Set covering: local search phase (optimal cover {P4, P6}). 

Consider the example in Figure 15 with cover J* = {P3, Ps, P6}. Applying the 
2, 1-exchange that replaces the 2-tuple {P3, Ps} with the 1-tuple {P4} results in an 
optimal cover J* = {P4, P6} depicted in Figure 16. 

2.3.2. Maximum independent set problem 

We next describe a k-exchange search procedure for maximum independent set 
in the graph G = (V, E).  The idea here is to take as input an independent set 
S ___ V of size p and consider all k-tuples of vertices in `9, for a given parameter k, 
0 < k < p. For each such k-tuple {v i i , . . . ,  vik }, apply an exhaustive search to find 
a maximum independent set in the graph induced by the vertices of G not adjacent 
to the vertices in the set S'  = $ \ {v i i , . . . ,  vik }. If the resulting independent set N" 
is larger than ,5, the set of vertices S'  tO N" is an independent set and is larger than 
S. The procedure can now be applied to the new independent set. This procedure 
is given in Figure 17. 

Consider the example in Figure 18, where a 1-exchange (Vl = a) is carried 
out on the independent set {a, c}. There, the set S'  = ,9 \ {a} = {c}, so the 
exhaustive enumeration is done of the graph consisting of vertices {a, b, d} and 
edges { (a, b), ( a, d) }, resulting in the maximum independent set N" = { b, d }. Since 
this set has size 2, the new larger independent set {b, c, d} can be built. Applying 
the local search on this new independent set does not produce an improvement, 
thus halting the procedure at this local minimum. 
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procedure  local(V, E, S, k) 
1 for each k-tuple {vii , . . . ,  via } 6 S 
2 S' :=- S \ {vil , . . . ,  vik }; 
3 A := {w �9 v I (w, vd r E, Vv~ e s '}; 
4 Apply exhaustive search to graph induced by .4 to find A/'; 
5 i f lA/ ' l>  k ~  
6 S := S' U N'; 
7 local(V, E, S, k); 
8 fi; 
9 rof; 
end  local ;  

Fig. 17. Local search pseudo-code: maximum independent set. 

a 

d 

b 

d 
e 

S : I  d ~- {a,  c} S*ew = {b, c, d} 

Fig. 18. Local search example: maximum independent set. 

2.4. EXPERIMENTAL RESULTS 

To conclude this section, we describe experimental results of running GRASP imple- 
mentations on the two classes of problems described in this section. The codes used 
were implemented by Feo and Resende [12] for the set covering problem and Feo, 
Resende and Smith [13] for the maximum independent set problem. The codes are 
run on a single 150 MHz MIPS 4400 processor of a Silicon Graphics Challenge 
computer. Both codes are written in Fortran and were compiled with the f77  com- 
piler using flags -02  - O l i m i t  800. Running times were computed with the 
system routine e time. 

2.4.1. Set covering problem 

Fulkerson, Nemhauser and Trotter [18] proposed a class of small, yet difficult set 
covering problems that arise when computing the 1-width of incidence matrices 
of Steiner triple systems. To illustrate a GRASP for set covering, we consider the 
following instances from this class: A45, As t, A135, and A243. Figure 19 summarizes 
some statistics for these problems. Of the four instances, only the smallest has a 
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Problem 

A45 
As1 

A135 
A243 

Size 
Columns/Rows 

45/330 
81/1080 
135/3015 
243/9801 

Best Known 
Cover 

30 
61 
105 
203 

Optimal? 
yes 

unknown  

unknown 
unknown 

Fig. 19. Experimental results: set covering problem statistics. 

cover times 
a size found 

0.5 31 10 
30 4 

0.6 31 10 
30 8 

0.7 31 10 
30 9 

0.8 31 10 
30 10 

0.9 31 10 
30 5 

Fig. 20. 

iterations cpu seconds 
min avg max min avg max 

5 42.2 iii 0.01 0.06 0.15 
691 2641.5 4606 0.92 3.50 6.11 

3 23.7 58 0.01 0.04 0.08 
40 3111.5 6246 0.08 4.33 9.95 
1 25.7 56 0.00 0.04 0.07 

594 2982.3 7329 0.72 3.71 8.91 

1 6.9 27 0.00 021 0.03 
121 1276.0 3589 0.15 1.45 4.08 

1 7.1 28 0.00 0.01 0.04 
2799 7129.4 8919 3.27 8.38 10.34 

Experimental results: GRASP solution statistics (A45). 

known optimal solution. The GRASP was run with five values of the restricted 
candidate list parameter a: 0.5, 0.6, 0.7, 0.8, and 0.9. For each parameter setting, 
10 runs were carried out for each instance, varying the initial seed of the random 
number generator. The local search phase consisted of only 1,0-exchanges, i.e., the 
GRASP eliminated any superfluous columns. 

Figures 20, 21, 22, and 23 summarize the GRASP runs for instances A45, A8I, 
A135 and A243, respectively. The GRASP found the best known solutions for all of 
the instances considered. Running times for the two smaller instances were less 
than 10 cpu seconds in all but one run, while the longest run for the largest class 
took 673.4 seconds. Varying the parameter a from 0.5 to 0.9 changes the behavior 
of the GRASP from a more randomized to a more greedy procedure (a = 0 is a 
purely random procedure, while a = 1 is purely greedy). In most instances, the 
GRASP with the parameter value a = 0.8 is the best performer. For A135, a = 0.9 
did slightly better. 

2.4.2. Maximum independent set problem 

For testing the GRASP on the maximum independent set problem, let us consider 
the family of undirected random graphs G[vl,p. These graphs have IVI vertices, 
and each edge from the set of edges on the complete graph on IV t vertices appears 
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cover times iterations 
a size found min avg max 

0.5 63 9 1 5.9 18 
62 
61 

0.6 63 
62 
61 

0.7 63 
62 
61 

0.8 63 
62 
61 

0.9 63 
62 
61 

cpu seconds 
min avg max 

1 894 894.0 894 
4 1 51.8 154 

10 1 5.1 11 
3 249 443.7 725 
2 418 448.0 478 

10 2 2.9 6 
5 39 409.0 996 
4 197 416.5 736 

10 1 3.5 7 
3 162 445.3 747 
7 20 486.7 893 

10 1 4.0 6 
3 22 277.3 627 
1 718 718.0 718 

0.02 0.05 0.12 
4.95 4.95 4.95 
0.02 0.30 0.86 
0.02 0.04 0.07 
1.34 2.36 3.85 
2.21 2.37 2.52 
0.02 0.03 0.04 
0.20 2.04 5.01 
0.97 2.05 3.60 
0.02 0.03 0.05 

0.76 2.10 3.45 
0.ii 2.24 4.08 
0.02 0.03 0.05 
0.12 1.33 2.98 
3.42 3.42 3.42 

Fig. 21. Experimental results: GRASP solution statistics (Aa). 

cover times 
a size found min 

0.5 107 
106 
105 
104 

0.6 107 
106 
105 
104 

0.7 107 
106 
105 
104 

0.8 107 
106 
105 
104 

0.9 107 
106 
105 
104 

iterations 
avg max 

10 1 86.1 243 
9 517 3532.0 8379 
1 3787 3787.0 3787 
0 

10 2 42.5 143 
10 863 2704.2 6330 

1 5992 5992.0 5992 
0 
9 2 46.7 110 

10 48 765.9 3149 
3 1930 3087.0 3773 
0 
8 3 6.8 18 
8 20 121.3 279 

10 6 1835.6 5299 
2 4635 5747.5 6860 
9 1 3.2 6 
9 15 51.0 107 

10 1 790.3 2402 
3 2651 5184.3 8807 

cpu seconds 
min avg max 
0.07 2.00 5.58 

11.64 79.84 186,74 
86.26 86.26 86,26 

0.09 0.98 3.12 
18.52 59.92 159.25 

125.44 125.44 125.44 

0.08 0.94 2.19 
1.00 14.67 59.83 

38.19 60.46 74.06 

0.09 0.16 0.35 
0.37 2.16 4.84 
0.14 31.18 86.89 

90.33 102.75 115.16 
0.06 0.10 0.15 
0.28 0.87 1.78 
0.06 12.84 38.55 

42.55 80.97 135.63 

Fig. 22. Experimental results: GRASP solution statistics (A135). 
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cover times iterations 
a size found min avg max 

0.5 206 8 10 23.6 76 
205 10 8 344.6 1490 
204 5 2430 2895.2 3988 
203 0 - - 

0.6 206 10 6 26.6 66 
205 10 25 359.9 1406 
204 2 1475 3520.0 5565 
203 0 - 

0.7 206 10 1 28.0 70 
205 10 73 398.5 1070 
204 4 2927 4527.5 6613 
203 0 - 

0.8 206 10 2 16.2 59 
205 10 44 176.8 353 
204 10 413 2125.4 5453 
203 2 2581 3153.5 3726 

0.9 206 8 2 38.8 148 
205 10 2 414.4 1826 
204 3 591 4347.0 7762 
203 0 - 

Fig. 23. 

cpu seconds 
min avg max 

1.40 3.15 9.95 
1.17 43.18 184.13 

309.55 364.61 496.35 

0.95 3.34 7.94 
3.15 43.39 169.37 

182.25 427.33 672.42 

0.29 3.13 7.61 
7.62 41.84 112.67 

305.15 469.81 673.42 

0.33 1.64 5.60 
4.03 16.03 31.11 

36.51 189.67 492.53 
236.98 281.95 326.92 

0.32 3.55 13.46 
0.32 36.08 163.93 

49.38 366.29 645.54 

Experimental results: GRASP solution statistics (A243). 

E(X14) -- 4.23 x 103 P(X14 --- 0) _< 0.02 

E(X15) = 1.70 x 101 P(X15 = 0) < 0.18 

E(X16) = 3.19 • 10 -2 P(X16 = 0) _< 1.00 

E ( X I r )  = 2.18 x 10 -5 P(X17 = 0) _< 1.00 

Fig. 24. Maximum independent sets in GlOOO ,5 

in Glv I,p, independently of  the inclusion of  any other edge, with probabil i ty p. This 
family  of  graphs has been studied extensively [3]. We consider here 100 instances 

of  r andom graphs with parameters  [ V[ = 1000 and p = 0.5, i.e., the class G1000,.5. 
Let  Xk be a stochastic variable denoting the number  of  independent sets of  size 
k in an instance of  Gt000,.5. Figure 24 shows values of  the expectation of  X~ and 
bounds on the the probabil i ty that Xk = 0. The latter indicates that independent 

sets o f  size 15 are abundant in Glo00,.5, while sets of  size 16 are rare. In the initial 
set of  runs, we search for a set of  15 or larger, and stop when such a set is found. 
Then,  in a second set of  runs, independent sets of  size 16 or larger are sought. 
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! a 

g b 

a 

Fig. 25. Preprocessing for maximum independent set. 

g h c g d f g b 

condition on {b, f} condition on {b, c} condition on {c, f}  

Fig. 26. Preprocessing for maximum independent set. 

For these examples, we introduce a way to decompose the work for a GRASP. 
The idea is to condition on favorable pairs of vertices being in the independent set, 
and solve a series of smaller, easier problems (each contracted graph having about 
250 vertices). We consider the 50 vertices having the smallest degrees, V~o~, = 
{v~l, vi2, . . . ,  v~,0}. For all pairs vi, vj E Vto~, such that (vi, vj) r E, compute 
a({vi, vj}), the number of vertices not adjacent to either vi or vj. The pairs are 
ordered in decreasing value of a, and at most 400 pairs are kept for consideration. 
The problems on the contracted graphs are solved in order, conditioning on the 
pairs being in the independent set. Consider, as an example, the graph in Figure 25, 
where we choose to condition on pairs of vertices from the set of vertices having 
degree 2, i.e. vertices {b, c, f}.  The pairs that we condition on are {b, c}, {b, f},  
and {c , f} .  For these pairs, we have cr({b,c}) = I{d,f,g}[ = 3, cr({b,f}) = 
l{ c,g,  h}l = 3, and ~r({c,/}) = I{b, 9}[ = 2. Figure 26 shows the contracted 
graphs induced by conditioning on pairs {b, f} ,  {b, c} and {c, f} ,  along with the 
maximum independent sets of each graph. Together, with the conditioned pairs, we 
get the independent sets {c, f ,  g}, {b, c, f ,  g}, and {b, c, f ,  g}, of which the set of 
size 4 is optimal. 

In our experiments, for each conditioned instance, at most 100 GRASP iterations 
are performed, using candidate list parameter c~ = 0.1. Local search is carried out 
only if the independent set found in the 250 node graph is of size 11 or greater. 
We use the k-exchange local search described in Section 2.3.2 with parameter 
k = 2. Figure 27 summarizes the GRASP runs on the 100 instances of maximum 
independent set problems on G1000,.5. The entries have been sorted in increasing 
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preproc seconds tuples examined GRASP seconds 
instances min avg max min avg max min avg max 

1-10 
11-20 
21-30 
31-40 
41-50 
51-60 
61-70 
71-80 
81-90 

91-100 

0.41 0.42 0.43 
0.40 0.42 0.43 
0.39 0.41 0.42 
0.41 0.42 0.43 
0.40 0.42 0.43 
0.41 0.42 0.43 
0.41 0.42 0.43 
0.40 0.42 0.44 
0.40 0.42 0.43 
0.41 0.42 0.44 

Fig. 27. Experimental results: 

0.12 3.77 
9.70 12.36 

20.24 22.93 
29.50 33.11 
41.96 47.86 
59.20 69.89 
88.87 98.64 

110.41 141.66 
203.64 247.24 
324.68 489.28 

1 2.1 4 9.26 
4 4.8 8 19.66 
7 8.6 10 28.72 

11 12.2 14 38.56 
15 17.0 20 55.36 
20 24.8 29 82.67 
32 34.6 38 110.31 
39 50.5 66 196.69 
73 88.2 116 315.17 

114 173.8 314 893.19 

GRASP maximum independent set solution statistics. 

order of running times and are summarized in sets of 10 runs, e.g., the first row 
summarizes the runs for the ten instances with the fastest running times, the second 
row for the second ten fastest times, etc. The table lists the minimum, average, and 
maximum cpu times for setting up the 400 conditioning tuples (preproc seconds), 
the minimum, average, and maximum number of tuples examined until a set of 
size 15 or greater is found, and the minimum, average, and maximum cpu times, 
in seconds, taken by the GRASP to find the independent sets. 

Of the one hundred runs stopped when the GRASP found a set of size 15 or 
greater, independent sets of size 15 were found in 98 instances and of size 16 in 
two instances. In more than half of the runs, the GRASP took less than one minute 
of cpu time to terminate. The code was run on the same instances to search for sets 
of size 16 or greater. There, the code found the two size 16 sets found in the first set 
of runs, along with another set of size 16, totaling three instances with independent 
sets of size 16 out of the 100 tested. For those runs, the preprocessing times were 
.42, .45, and .45 seconds; the number of tuples examined were 35, 16, and 76; and 
the GRASP running times were 101.88, 319.39, and 217.77 seconds. 

3. Applications 

We now turn our attention to a number of GRASP implementations that have 
appeared in the literature, covering a wide range of applications, including set 
covering, production planning and scheduling, graph problems, location problems, 
quadratic assignment problems, and problems in logic. Two industrial implemen- 
tations of GRASP are also discussed. 

3.1. SET COVERING 

Feo and Resende [12] describe a GRASP for solving set covering problems that 
arise in computing the 1-width of the incidence matrix of Steiner triple systems. 
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The construction mechanism as well as the local search strategy of that GRASP are 
described in Section 2 of this paper. Computational results are described, where the 
GRASP quickly produces best known solutions for all of the instances considered. 

Bard and Feo [2] describe a unified framework in which product and process 
demands can be related to manufacturing system requirements. The objective is to 
determine, in a flexible manufacturing environment, how many of each machine 
to purchase, as well as what fraction of the time each piece of equipment will be 
configured for a particular type of operation. A nonlinear cost minimization model 
is developed and is solved with a depth-first branch and bound routine that employs 
a GRASP for set covering to find good feasible solutions. The solutions obtained 
with the GRASP permit early fathoming and greatly contribute to the efficiency of 
the algorithm. 

Feo and Bard [9] use GRASP to solve a sequence of set covering problems in an 
approach that renders an approximate solution to a minimum cost, multicommodity, 
network flow problem with integral constraints for airline flight scheduling and 
maintenance base planning. They demonstrate the procedure with data for the 
American Airlines Boeing 727 fleet, and show that the new approach is a significant 
improvement over current solution techniques. 

3.2. PRODUCTION PLANNING AND SCHEDULING 

Bard and Feo [1, 10] apply GRASP to computer aided process planning, specifically, 
the selection of tools and cutting paths for milling metal on flexible manufacturing 
machines. The underlying optimization problem is modeled as an integer program 
and is solved by branch and bound. Lower bounds are calculated by means of 
a Lagrangian relaxation technique. Feasible solutions (upper bounds) are found 
by a GRASP applied to a specialized set covering problem. Overall performance 
of the method, including quality of solutions and cpu requirements, is judged by 
examining a wide variety of instances derived from actual manufacturing data. 

Laguna and Gonzfilez-Velarde [29] consider the scheduling of parallel machines 
in a just-in-time production environment. The optimization problem possesses a 
weighted earliness penalty with deadlines for identical parallel machines. The 
authors present a hybrid heuristic that combines elements of both tabu search and 
GRASP methodologies, and uses a branch-and-bound postprocessor. They compare 
the performance of their method with the modified Smith heuristic of Chand and 
Scheeberger [6], concluding that their method succeeds in finding solutions that are, 
on average, 10 percent better than those found by the modified Smith heuristic. 

Feo, Venkatraman, and Bard [ 15] develop a GRASP for a single machine schedul- 
ing problem with flow time and earliness penalties. The method compares favorably 
with methods previously reported in the literature. A dynamic programming (DP) 
algorithm yields optimal solutions to problems with up to 30 jobs. In a fraction 
of the time required by the DP implementation, the GRASP code provides optimal 
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solutions to 238 out of the 240 instances tested, while providing solutions that are 
extremely close to the optimal in the remaining two instances. 

Feo, Sarathy, and McGahan [14] write about a single machine scheduling prob- 
lem with sequence dependent setup costs and linear delay penalties. They develop 
a GRASP which quickly finds optimal solutions to 20-job problems previously 
reported in the literature. The method is favorably compared to a tabu search 
implementation on instances ranging up to 165 jobs. The authors take advantage 
of the mutation concept found in genetic algorithms to enhance the performance 
of the local search phase of their GRASP implementation. 

Klincewicz and Rajan [27] describe two GRASP heuristics to solve the component 
grouping problem, a type of set partitioning problem that arises in a number of 
manufacturing and material logistics applications. In computational results, based 
on real manufacturing data, the GRASPs produce solutions having objective function 
values within 4.3 to 9.5 percent (7.4 percent on average) of a lower bound based 
on a combinatorial argument. Compared to previously used methods based on a 
network flow heuristic [33], the first GRASP produced better solutions on all 12 test 
problems, while the second GRASP produced better solutions on all but one. 

Feo, Bard, and Holland [8] present a GRASP implementation for scheduling 
printed wiring board assembly. The combinatorial optimization problem possesses 
multiple machines, precedence relationships, start dates, due dates, capacity con- 
straints, set up times, processing times, and resource constraints. A multicriterion 
objective is considered that includes minimizing weighted tardiness, maximizing 
revenue (weighted throughput), minimizing cycle times, and flowline balancing. 
The GRASP is empirically validated in an industrial setting with over 70 process- 
ing stations, 140 product types, 4500 components, 126 shifts, 49,000 boards in 
wIP, and 142,000 boards on demand. The heuristic is shown to outperform rule 
based methods used previously. This work highlights the ease and effectiveness 
with which GRASP can be applied to extremely large and complex optimization 
problems found in practice. 

3.3. GRAPH PROBLEMS 

Feo, Resende and Smith [13] describe a GRASP for finding large independent sets 
on sparse random graphs. The construction and local search phases of that GRASP 
are described in Section 2 of this paper. The GRASP is implemented in parallel 
on a MIMD computer by assigning to different processors the different contracted 
graphs induced by the conditioning-on-pairs strategy described in Subsection 2.4.2 
of this paper. The efficiency (speedup divided by the ratio of processors) of going 
from one to eight processors was, on average, 93.6 percent. The GRASP was tested 
on graphs with up 3500 nodes and over 3 million edges and is compared with 
implementations of simulated annealing, tabu search, and an exact method. The 
GRASP found larger independent sets, and in substantially less cpu time, than the 
simulated annealing implementation. GRASP was compared with the tabu search 
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code STABULUS [17] on three classes of random graphs, having 600, 1500, and 3500 
vertices. The tabu search code was 1.6 times faster on the 600-node graphs, but 
was 3.7 times and over 10 times slower on the 1500-node and 3500-node graphs, 
respectively. On 600-node graphs, the exact method of Carraghan and Pardalos 
[5] produced optimal solutions on all 25 instances tested, while the GRASP rarely 
produced optimal solutions. However, to produce the certificate of optimality, the 
exact method required about 40 times more cpu time than needed by the GRASP 
to produce independent sets having one vertex less than the optimal size. For a 
1000-node graph, the exact method failed to find an optimal solution in 10 cpu 
days of computing, while GRASP quickly found probably-optimal sets of size 15 or 
16 in all 200 instances tested. 

Feo and Smith [37] offer a GRASP for coloring sparse graphs. The construction 
phase builds one color class at a time by identifying maximal independent sets. 
The local search phase uses a simulated annealing approach starting at a rela- 
tively cold temperature. This starting condition keeps the search in the vicinity 
of the constructed solution while allowing it to wander away from local minima. 
The GRASP implementation performs well on a wide range of instances including 
random graphs and graphs of known chromatic number. 

Laguna, Feo, and Elrod [28] develop a GRASP implementation for the network 
2-partition problem. The heuristic is conceptually simple and straightforward to 
program. The GRASP is empirically compared to the Kemighan-Lin method [24] 
which stood for over twenty years as the dominating heuristic procedure. Over 
3500 instances are used to compare the running times and solution values provided 
by the two methods. The instances include a wide variety of random and geometric 
graphs, as well as smaller examples for which optimal solutions can be found via 
branch and bound. The comparative study empirically confirms the effectiveness 
o f  t h e  GRASP implementation. 

3.4. LOCATION PROBLEMS 

Klincewicz [26] compares tabu search and GRASP for solving instances of the 
discrete p-hub location problem, a problem that has applications in airline and 
package delivery systems, as well as in certain telecommunications network design 
problems. In this problem, one is given an n-node graph and a matrix of internodal 
traffic and is asked to choose p of the n nodes to serve as hubs, which are to be fully 
interconnected. For all nonhub nodes, one must also determine which hub that node 
is to be connected to, making it possible to route traffic between any two nodes in 
the graph. The objective is to minimize the total cost of sending traffic between 
demand pairs. Computational testing was carried out on real data for airline hub 
design (n = 10, 15, 25, p = 3, 4) and a packet network design problem (n = 52, 
p = 4, 10). The author concludes that while the tabu search implementation was 
about twice as fast as the GRASP code in producing the best solution, GRASP found 
solutions having the best known value more often. 
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3.5. QUADRATIC ASSIGNMENT PROBLEMS 

Feo and Gonzzilez-Velarde [11] apply GRASP to a quadratic assignment problem 
(QAP) that models the positioning of intermodal highway trailers on railcars. 
The GRASP heuristic is used within a branch and bound scheme to provide optimal 
solutions. The heuristic is observed to be extremely fast, and by itself, finds optimal 
solutions to all problem instances furnished over a two-year period by Consolidated 
Rail Corporation (Conrail). 

Li, Pardalos, and Resende [31] propose a GRASP for the classical quadratic 
assignment problem, where one wants to assign, at minimum cost, n facilities 
(with interfacility flow demands) to n sites. The cost of assigning facility i to site 
k and facility j to site I is f i , j  �9 dk, l ,  where f i , j  is the flow between facilities i and j ,  
and dk,z is the distance between sites k and I. The GRASP was tested on 88 instances 
of QAP, most of which are from QAPLIB [4], a library of QAP test problems. The 
GRASP found the best known solution of almost all of the instances, and improved 
on the best known solution in a few cases. FORTRAN subroutines of this GRASP are 
described in [35]. 

3.6. PROBLEMS IN LOGIC 

Resende and Feo [34] describe several GRASP implementations for the satisfiability 
problem in logic. In the satisfiability problem one wants to find a troth assignment 
to Boolean variables to make a given Boolean formula evaluate to true or prove that 
no such assignment exists. The GRASPs tested attempt to find an assignment and are 
not capable of proving unsatisfiability. The codes were tested on most satisfiable 
instances of the benchmark collection of the Second DIMACS Algorithm Imple- 
mentation Challenge [22] and compared with GSAT [36], a code that has recently 
received much attention due to its ability to find satisfying truth assignments of 
large formulae. The GRASPS found satisfiable assignments on all 114 instances test- 
ed. The GRASPs were faster than GSAT in three out of the five problem classes tested. 
Furthermore, GSAT failed to produce satisfiable assignments to several formulae 
for which the GRASPs were successful. 

3.7. INDUSTRIAL APPLICATIONS 

GRASP has been directly applied in practice as part of two large scale decision 
support systems developed and implemented by Optimization Alternatives, an 
information systems development firm in Austin, Texas. 

INSITES TM (Integrated Scheduling, Inventory, and Throughput Evaluation Sys- 
tem) provides facility-wide planning and scheduling functions for printed wire 
board assembly operations. The GRASP used in INsrrEs is described in Feo, Bard, 
and Holland [8]. The success of this management information system at Texas 
Instruments is discussed in Feo, Bard, and Holland [7]. 
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OASIS TM (Optimization Alternatives' Strategic Intermodal Scheduler) controls 
the logistics operations in an intermodal rail terminal. The system tracks all inven- 
tory in the yard and directs parking activities to maximize the utilization of the 
terminal's parking areas. It issues hostler and packer work orders through a radio 
frequency (RF) interface to speed operations and handle greater volumes of traffic 
with less equipment and personnel. It optimizes load plans for both trailers and 
containers, and thus, improves railcar utilization. The GRASP found in OASIS is 
used for optimizing the load plans and is based in part on the work of Feo and 
GonzAlez-Velarde [11], discussed previously. OASIS is currently in use at several 
Conrail terminals and will be deployed at all major Conrail and Union Pacific 
intermodal yards by 1996. 

4. Concluding Remarks 

GRASP possesses characteristics found in and shared by other heuristic search 
methodologies. Close analogies can be drawn to simulated annealing, tabu search, 
and genetic algorithms. The implementations of these various approaches are cer- 
tainly quite different in practice. However, they all share with GRASP fundamental 
heuristic concepts that can be used to classify their operations. The next two para- 
graphs give a terse description of simulated annealing, tabu search, and genetic 
algorithms. The remainder of the conclusion offers several thoughts regarding a 
classification schema for these and other heuristic methodologies. 

Tabu search and simulated annealing contain local search procedures that 
explore the neighborhood around a current solution for improvements to that solu- 
tion. Each has the ability to remove itself from local optima in order to find better 
if not optimal solutions. Simulated annealing uses a straightforward randomization 
technique. Tabu search in its simplest form uses a short term memory strategy 
to intelligently direct its search away from neighborhoods already considered. 
Medium and long term memory strategies are respectively used in tabu search to 
allow for search intensification and diversification with regard to a known set of 
promising solutions. 

Genetic algorithms (GA) apply crossover and mutation operations to a popula- 
tion of solutions. Crossover mates two solutions in the population by combining 
attributes of the solutions to form an offspring. The offspring is then mutated by 
randomly altering a few of its attributes. The offspring is added to the popula- 
tion if its solution value compares favorably with the other solution values in the 
population, thus resembling natural selection in the theory of evolution. 

Categories of fundamental heuristic concepts include: solution construction, 
solution perturbation, procedure repetition and restart criteria, problem decom- 
position or conditioning, and procedure stopping rules. For illustrative purposes 
consider the category of solution perturbation. A local search mechanism, such as 
a 2-exchange technique or a mutation operation found in a genetic algorithm, are 
examples of solution perturbation. The basic principle is to move from one solution 
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pro  cedure  grasp () 
1 Inpu t Ins tance  () ; 
2 for Grasp stopping criterion not satisfied - .  
3 Const ructGreedyRandomizedSolut ion (Solut  ion) ; 
4 for local search stopping criterion not satisfied --* 
5 LocalSearch (Solut ion)  ; 
6 Updat eSolut  ion (Solu t ion ,  Best Solut  ionFound) ; 
7 Mut at eSolut ion (Solution) ; 
8 rof; 
9 UpdateSolut ion (Solution,BestSolutionFound) ; 
10 rof; 
11 re tu rn(Bes t  Solut  ionFound) 
end grasp; 

Fig. 28. Adding mutation concept to GRASP local search phase. 

to another. For each of the categories, a wide variety of mechanisms have been 
devised and even combined to form hybrid techniques. 

Guiding the design of mechanisms in each category are two goals. The first is to 
find an optimum or near optimum solution. The second is to arrive at such a solution 
with a minimal amount of computational effort. Given that most combinatorial 
optimization problems are classified as intractable and have enormous solution 
spaces, it is very often ineffective to apply the brute force technique of exhaustive 
enumeration. Thus, one must strategically search for good solutions, biasing the 
search to consider only a minuscule fraction of all possibilities. 

Biases in heuristic mechanisms are sometimes referred to as intelligence. They 
can be grouped as follows: Random or lexicographic bias - indiscriminate selection 
of alternatives; Greedy or simple decent bias - selection based on the problem's 
objective function; Memory bias - selection based on prior selections; Experience 
or target bias - selection based on prior performance. Consider the following par- 
tial illustrations. GRASP uses a greedy bias to guide the construction of each new 
solution. Simulating annealing uses a random bias to perturb its current solution. 
Tabu search employs a short term memory bias, while genetic algorithms possess 
a subtle experience bias analogous to natural selection. Explicit examples of expe- 
rience bias are also apparent in mechanisms employing the dynamic application of 
target analysis. 

GRASP and the other methods discussed herein have contributed enormously to 
our ability to empirically find good solutions to otherwise unsolved instances of 
practical combinatorial optimization problems. Fortunately, these methodologies 
are not antithetical to one another. They each possess characteristics that can be 
combined in an enormous number of ways yet to be explored. As an example, 
consider the hybrid procedure, developed by Feo, Sarathy, and McGahan [14], 
depicted in Figure 28. The framework is GRAsP-based, yet the mutation introduced 
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in Phase 2 is borrowed from the GA methodology. A future direction of research into 
the design of heuristics should include an expansion of the classification schema 
started here. The motivation for this work is abundant. First, it will improve our 
ability to describe and define heuristic methodologies and allow us to conceptually 
compare different approaches. Second, it will guide the enhancement efforts of 
existing procedures that will lead to improved hybrid methods. And finally, it may 
evolve into a theoretical framework capable of blossoming the currently limited 
discipline of probabilistic analysis of heuristics. 
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