
Journal of Global Optimization 6: 109-133, 1995. 109
�9 1995 KluwerAcademic Publishers. Printed in the Netherlands.

Greedy Randomized Adaptive Search Procedures

T H O M A S A. FEO
Operations Research Group, Department of Mechanical Engineering, The University of Texas,
Austin, TX 78712 U.S.A. (email: feo@emx.utexas.edu)

and

MAURICIO G.C. RESENDE
Mathematical Sciences Research Center, AT&T Bell Laboratories, Murray Hill, NJ 07974 U.S.A.
(email: mgcr@research.att.com)

(Received: 29 July 1994; accepted: 14 October 1994)

Abstract. Today, a variety of heuristic approaches are available to the operations research practitioner.
One methodology that has a strong intuitive appeal, a prominent empirical track record, and is trivial
to efficiently implement on parallel processors is GRASP (Greedy Randomized Adaptive Search
Procedures). GRASP is an iterative randomized sampling technique in which each iteration provides a
solution to the problem at hand. The incumbent solution over all GRASP iterations is kept as the final
result. There are two phases within each GRASP iteration: the first intelligently constructs an initial
solution via an adaptive randomized greedy function; the second applies a local search procedure
to the constructed solution in hope of finding an improvement. In this paper, we define the various
components comprising a GRASP and demonstrate, step by step, how to develop such heuristics
for combinatorial optimization problems. Intuitive justifications for the observed empirical behavior
of the methodology are discussed. The paper concludes with a brief literature review of GRASP
implementations and mentions two industrial applications.

Key words: Combinatorial optimization, search heuristic, GRASP, computer implementation.

1. Introduction

Optimization problems that involve a large but finite number of alternatives often
arise in industry, government and science. Common examples include designing
efficient te lecommunicat ion networks, scheduling operations in a semiconductor
manufacturing plant, designing effective school zoning, locating strategic energy
reserves, routing delivery vehicles, troop deployment, airline crew scheduling, and
designing a large experiment. In all o f these examples, it is theoretically possible
to enumerate all combinations of solutions and evaluate each with respect to the
stated objective. The ones that provide the most favorable outcome are deemed
optimal. However, f rom a practical perspective, it is infeasible to follow such a
strategy of complete enumeration because the number of combinations often grows
exponential ly with the size of problem.

Much work has been done over the last 40 years to develop optimal seeking
methods that do not explicitly require an examination of each alternative. This
research has given rise to the field of combinatorial optimization (see Papadimitri-

110 THOMAS A. FEO AND MAURICIO G. C. RESENDE

p r o c e d u r e grasp ()
1 Input Ins tance () ;
2 for GRASP stopping criterion not satisfied --+
3 Construct GreedyRandomizedSolut ion (Solut ion) ;
4 LocalSear ch (Solut ion) ;
5 Updat eSolut ion (Solut ion, BestSolutionFound) ;
6 rof;
7 re turn(Bes t Solut ionFound)
end grasp;

Fig. 1. A generic GRASP pseudo-code

ou and Steiglitz [32]), and an increasing capability to solve ever larger real-world
problems. Notable successes have been reported for linear programming [23], spe-
cialized versions of the traveling salesman problem [30] and bus driver scheduling
[16], to name a few.

Nevertheless, most problems found in industry and government are either com-
putationally intractable by their nature, or sufficiently large so as to preclude the use
of exact algorithms. In such cases, heuristic methods are usually employed to find
good, but not necessarily optimal solutions. The effectiveness of these methods
depends upon their ability to adapt to a particular realization, avoid entrapment
at local optima, and exploit the basic structure of the problem, such as a net-
work or a natural ordering among its components. Furthermore, restart procedures,
controlled randomization, efficient data structures, and preprocessing are also ben-
eficial. Building on these notions, various heuristic search techniques have been
developed that have demonstrably improved our ability to obtain good solutions to
difficult combinatorial optimization problems. The most promising of such tech-
niques include simulated annealing [25], tabu search [19, 20], genetic algorithms
[21] and GRASP (Greedy Randomized Adaptive Search Procedures).

In this paper, we define the various components comprising a GRASP and demon-
strate, step by step, how to develop such heuristics for combinatorial optimization
problems. Intuitive justifications for the observed empirical behavior of the method-
ology will be discussed. The paper concludes with a brief literature review of GRASP
and mentions two industrial applications.

A GRASP is an iterative process, with each GRASP iteration consisting of two
phases, a construction phase and a local search phase. The best overall solution
is kept as the result. A generic GRASP pseudo-code is given in Figure 1. Line 1
of the pseudo-code corresponds to problem input. The GRASP iterations take place
in lines 2-6, and terminate when some termination criterion, such as maximum
number of iterations have occured or solution sought has been found, is satisfied.
Line 3 is the GRASP construction phase, while line 4 is the local search phase. If an
improved solution is found, the incumbent is updated in line 5. We next present a

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 1 1 1

p r o c e d u r e ConstructGreedyRandomizedSolution(Solution)
I Solution = {};
2 for Solution construction not done --+
3 MakeRCL(RCL);
4 s = SelectElementAtRandom(KCL);
5 Solution = Solution U {s};
6 AdaptGreedyFunction(s);

7 r o t
end ConstructGreedyRandomizedSolution;

Fig. 2. GRASP construction phase pseudo-code.

p r o c e d u r e local(P,N(P),s)
1 for s not locally optimal
2 Find a better solution t 6 N(s);
3 Let s = t;
4 rof;
5 re turn(s as local optimal for P)
end loca l ;

Fig. 3. GRASP local search phase.

high-level description of these two phases. In the following section we delve into
more detail.

In the construction phase, a feasible solution is iteratively constructed, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all elements in a candidate list with respect
to a greedy function. This function measures the (myopic) benefit of selecting
each element. The heuristic is adaptive because the benefits associated with every
element are updated at each iteration of the construction phase to reflect the changes
brought on by the selection of the previous element. The probabilistic component
of a GRASP is characterized by randomly choosing one of the best candidates in the
list, but not necessarily the top candidate. The list of best candidates is called the
restricted candidate list (RCL). This choice technique allows for different solutions
to be obtained at each GRASP iteration, but does not necessarily compromise the
power of the adaptive greedy component of the method. Figure 2 displays pseudo-
code for the construction phase of GRASP. The solution to be contructed is initialized
in line 1 of the pseudo-code. The loop from line 2 to 7 is repeated until the solution
is constructed. In line 3, the restricted candidate list is built. A candidate from the
list is selected, at random, in line 4 and is added to the solution in line 5. The effect
of the selected solution element ~ on the benefits associated with every element is
taken into consideration in line 6, where the greedy function is adapted.

112 THOMAS A. FEO AND MAURICIO G. C. RESENDE

size
RCL

1

2
4
8
16

32

64
128
256

solution values
3116 3117 3118 3119 3120 3 1 2 1 3122 3123 3124 3125 3126

1 3
4 18

4 36
5 35

1 50
16 282

72 635
177 1213

269 1716
304 1980

100000

151 6053 93796
75 1676 17744 80503 2

750 6566 31257 61336 35 5
2485 13274 38329 45547 42 25

4196 16455 37937 40479 164 58

5933 19553 37666 34832 441 163
7324 21140 37186 34832 679 281
7867 21792 36725 29027 1575 689

Fig. 4. Sample distributions of GRASP iteration solutions.

size RCL 1 1 2 4 8 1 6 3 2 6 4 1 2 8 2 5 6 1
mean (3120 +) 4 . 0 0 3 . 9 4 3 . 7 9 3 . 5 3 3 . 2 7 3 . 1 4 3 . 0 0 2 . 9 1 2.89

Fig. 5. Means of sample distributions of GRASP iteration solutions.

As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to simple
neighborhood definitions. Hence, it is almost always beneficial to apply a local
search to attempt to improve each constructed solution. A local search algorithm
works in an iterative fashion by successively replacing the current solution by a
better solution in the neighborhood of the current solution. It terminates when no
better solution is found in the neighborhood. The neighborhood structure N for
a problem P relates a solution s of the problem to a subset of solutions N(~). A
solution ~ is said to be locally optimal if there is no better solution in N(s). Given
a neighborhood structure N, a local search algorithm has the general form as stated
in Figure 3. The key to success for a local search algorithm consists of the suitable
choice of a neighborhood structure, efficient neighborhood search techniques, and
the starting solution.

While such local optimization procedures can require exponential time from an
arbitrary starting point, empirically their efficiency significantly improves as the
initial solution improves. Through the use of customized data structures and careful
implementation, an efficient construction phase can be created which produces
good initial solutions for efficient local search. The result is that often many
GRASP solutions are generated in the same amount of time required for the local
optimization procedure to converge from a single random start. Furthermore, the
best of these GRASP solutions is generally significantly better than the single solution
obtained from a random starting point.

It is difficult to formally analyze the quality of solution values found by using
the GRASP methodology. However, there is an intuitive justification that views
GRASP as a repetitive sampling technique. Each GRASP iteration produces a sample

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 113

solution from an unknown distribution of all obtainable results. The mean and
variance of the distribution are functions of the restrictive nature of the candidate
list. For example, if the cardinality of the restricted candidate list is limited to one,
then only one solution will be produced and the variance of the distribution will
be zero. Given an effective greedy function, the mean solution value in this case
should be good, but probably suboptimal. If a less restrictive cardinality limit is
imposed, many different solutions will be produced implying a larger variance.
Since the greedy function is more compromised in this case, the mean solution
value should degrade. Intuitively, however, by order statistics and the fact that the
samples are randomly produced, the best value found should outperform the mean
value. Indeed, often the best solutions sampled are optimal. Figures 4-5 show
results of a simulation experiment that illustrates this intuition. The figures show,
for different cardinality restriction values (candidate list size = 1, 2, . . . , 256), the
distribution of observed solution values (3116, 3117, . . . , 3126) obtained at each
iteration, for 100,000 replications of GRASP iterations. The simulation uses the code
GRASP-B, of Resende and Feo [34], to solve satisfiability instance s s a 7 552 - 16 0
of the 2nd DIMACS Algorithm Implementation Challenge [22]. In the optimization
problem, one wants to maximize the number of satisfied clauses. Problem instance
s s a 7 5 5 2 - 1 6 0 is satisfiable and has 1391 variables, 3126 clauses, and 7025
literals. Consequently, the optimal solution value is 3216. The simulation shows
that the greedy solution (IRCLI = 1) has the highest mean solution value (3124.00)
and the smallest variance (zero). As the restriction is increasingly relaxed, the
mean values decrease and the variances increase. With the increase in variance,
the number of samples drawn from the set of optimal solutions also increases. No
optimal solution is drawn for [RCL I = 1,2, and 4. Five are drawn for IRCLI = 8,
and as many as 689 are drawn for the largest list size of 256.

An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned (candidate list size and
number of GRASP iterations), and therefore, development can focus on implement-
ing efficient data structures to assure quick GRASP iterations. Finally, GRASP can
be trivially implemented on a parallel processor in an MIMD environment. Each
processor can be initialized with its own copy of the procedure, the instance data,
and an independent random number sequence. The GRASP iterations are then per-
formed in parallel with only a single global variable required to store the best
solution found over all processors.

The remainder of the this paper is organized as follows. In Section 2, the
GRASP methodology is described in detail. Several GRASP implementations are
summarized in Section 3. A summary and discussion of future work are presented
in Section 4.

114 THOMAS A. FEO AND MAURICIO G. C. RESENDE

P1 ~ ~ P4
�9 �9 1

�9 �9 2

�9 �9 3

Fig. 6. Set covering problem example.

2. Methodology

In this section, we describe a general framework for GRASP, using two classical
combinatorial optimization problems (set covering and the maximum independent
set) to illustrate the various components of the methodology. We define the two
problems and describe the two phases of GRASP with respect to each problem
class. Examples are given for the procedures described. We conclude the section
by describing computational testing of GRASP codes for set covering and maximum
independent set.

2.1. PROBLEM DEFINITIONS

We begin by defining the two combinatorial optimization problems used in this
section to illustrate the phases of a GRASP: the set covering problem and the
maximum independent set problem.

2.1.1. Set covering problem

Given n finite sets P1, P2, �9 �9 P~, let

n

I = U Pi= {1,2, . . . ,ra}
i=1

and J = { 1 , 2 , . . . , n}. A set J* C_ J is a cover if Uiea, Pi = I. In the set covering
problem we want to find the minimum cardinality cover.

Consider the example in Figure 6 where four sets P1 = {1, 2}, P2 = {1, 3},
P3 = {2}, and P4 = {3} are given. There are 7 valid covers for this exam-
ple: {P1, P2, P3, P4}, {P1, P2, P3}, {P1, P2, P4}, {P2, P3, P4}, {P1, P2}, {P1, P4},
{P2, P3}. The optimal covers, of size 2, are: {P1, P2}, {P1, P4} and {Pz, P3}.

2.1.2. Maximum independent set problem

Given a graph G = (V, E) where V is the vertex set and E is the edge set of G, an
independent set (or vertex packing or stable set) is a set of vertices whose elements
are pairwise nonadjacent. In the maximum independent set problem we want an
independent set of maximum cardinality.

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 115

"b

c . d

Fig. 7. Independent set problem example.

Consider the example in Figure 7 where a graph with four vertices {a, b, c, d}
and three edges { (a, b), (a, c), (c, d) } is given.

The independent sets for this example are {a, d}, {b, c}, {a}, {b}, {c} and {d}.
There are two maximum independent sets: {a, d} and {b, c}.

2.2. GRASP CONSTRUCTION PHASE

During the construction phase of GRASP a solution is built one element at a time,
with each element selected at random from a list of candidates determined by an
adaptive greedy function. In this subsection, we illustrate the construction phase
by defining adaptive greedy functions and candidate list restriction mechanisms
for the two examples described above.

2.2.1. Set covering problem

A set Pi is said to cover the set F c_ I if Pi N F -- I ~. A greedy choice in
the set covering problem is to select the set P~ that covers the largest number of
yet uncovered elements of set I . Let us use this as the adaptive greedy function to
construct a solution for the problem. Instead of making the greedy choice, we allow
a set to be in the restricted candidate list if the number of yet uncovered elements
that would be covered if that set were to be chosen is within some percentage (c~)
of the number covered by a greedy choice. This type of candidate list limitation is
referred to as value restriction. Similarly, we can limit the size of the candidate list
by including only the/3 best elements. This limitation is referred to as a cardinality
restriction. Note that one may apply both types of restrictions simultaneously to
form a candidate list.

Figure 8 illustrates, with pseudo-code, a value-restricted construction phase
for the set covering problem. The procedure takes as input the dimension n, sets
P1 , . . . , P~, parameter c~, and returns the cover J*. Steps 1 and 2 initialize sets
pO . . . , pO and J*. Steps 4-8 are repeated until all sets pO j = 1 , . . . , n, are

empty. In step 4, the largest cardinality F of sets pj0 j = 1 , . . . , n, is determined.
This cardinality is used in step 5, where the restricted set 7 9 of candidates is built.
An element k of set 79 is selected at random in step 6 and is added to the cover
J* in step 7. In step 8, the greedy function is adjusted, i.e. elements of set po are
removed from each set pj0, j = 1 , . . . , n.

116 THOMAS A, FEO AND MAURICIO G. C. RESENDE

p r o c e d u r e ConstructCover(n, P1, P2, . . . , Pn, a, J*)
1 for j = 1 , . . . , n ~ po := pj rof;
2 J* := 9;
3 for po # r = 1,. . . ,n --*
4 f' := max{IP~ : 1 _< j _< n};
5 p : = {j : IPYl > a - r , 1 < j < n};
6 Select k at random from :P;
7 J* := J* U {k};
8 for j = 1 , . . . , n --+ pO := pj0 \ pO rof;
9 rof;
end ConstructCover;

Fig. 8. Construction phase pseudo-code: set coveting.

P~ /'2 /'3 /'4 /'5 P6 P7 P8
�9 1

�9 �9 �9 2

�9 �9 �9 �9 �9 3

�9 �9 �9 �9 �9 4

�9 �9 5

2 1 2 3 3 3 2 i

Fig. 9. Set coveting example: construction phase.

Consider the example in Figure 9 and let ~ = 40 percent. The numbers on the
bottom row are the number of yet uncovered elements that would become covered
if the corresponding set on the top row of the figure were to be selected. The greedy
choices, P4, Ps, or P6 would therefore cover 3 elements. Since c~ = 40 percent, the
value restricted candidate list RCL = {P1,/94, Ps, P6, PT}. Suppose, at random,
that set P5 is selected. Then elements 3,4 and 5 are covered and we are left with
the situation depicted in Figure 10, with RCL = {P3, P4, P6, PT}.

Next, choosing P3 would leave the remaining choice as P6, and the resulting
constructed cover would be J* = {P3, Ps, P6}, of size 3. On the other hand, if P6
had initially been chosen in place of Ps, we would be in the situation depicted in

/'1 /'2 P3 /'4 P5 P6 P7 P8
�9 1

�9 �9 �9 2

3
4
5

0 0 1 1 0 1 1 0

Fig. 10. Set coveting example: construction phase.

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES l 17

~ P3 ~ ~ P6 P7 t:'8
1

�9 �9 �9 2

�9 �9 �9 �9 �9 3

4
5

1

Fig. 11.

1 1 2 1 0 2 0

Set covering example: construction phase.

Figure 11, where choosing P4 results in a smaller (optimal) cover J* = {P4, P6}
of size 2.

2.2.2. Maximum independent set problem

In the case of the maximum independent set problem, a GRASP builds an independent
set, one vertex at a time, guided by an adaptive greedy function. Let S* denote the
independent set to be constructed. The GRASP begins with S* = {0}. Let k = 0,
Vk = V and Ek = E. A plausible greedy choice for the maximum independent set
is to select the vertex with the smallest degree with respect to the graph induced by
the yet unselected vertices that are not adjacent to any previously selected vertex.
Let d, denote the degree of vertex v in graph Gk = (V~, Ek). The greedy choice is
to select a vertex with the smallest degree. Instead of selecting the greedy choice,
the GRASP construction phase builds a restricted candidate list of all vertices having
small degree, but not necessarily the smallest degree. Let I" be the smallest degree
of vertices in Vk, i.e.,

F = min{d~ Iv E Vk),

and let a > 0 be the restricted candidate parameter. The value restricted candidate
list is

RCL = {v E Vk I < (1 +

From the candidate list a vertex, say v, is selected at random and placed in the
independent set, i.e., S* +-- S* u {v}.

The greedy function is adaptive, because with the addition of each new vertex
in the independent set, Gk+l is different from Gk, and consequently vertex degrees
change. Gk+l is defined as follows: Vk+l = Vk \ {v} \ adj(v), where adj(v) is the
set of vertices in Gk adjacent to v; Ek+l = E \ {(% w) [U E S* or w E S*}.

Consider the example of Figure 12. Let a -- 0.6 in this case. Vertices {a, b, e, d, f}
each have degree 2, while vertex e has degree 4. Hence, the value restricted can-
didate list RCL = {a, b, r d, f} . Suppose vertex a were to be selected at random
from the RCL. The initial independent set would be S* = {a} and the resulting
graph G1 would be the one depicted in Figure 13. In graph G1, all vertices have

118 THOMAS A. FEO AND MAURICIO G. C. RESENDE

b

e
Fig. 12. Maximum independent set: construction phase.

e

Fig. 13. Maximum independent set: construction phase.

identical degree and consequently RCL = {c, e, f}. If vertex c were to be selected,
the resulting independent set of size 2 would be S* = {a, c}. If instead, b was
initially chosen (S* = {b}), the resulting graph G1 would be the one depicted in
Figure 14. In that case, the restricted candidate list RCL = {c, d, f}. Selecting
vertex d and then vertex e results in an optimal independent set S* = {b, c, d}.

2.3. G R A S P LOCAL SEARCH PHASE

We now turn our attention to the local search phase for each of the two examples.
We begin with a local search procedure for the set coveting problem and then
describe a procedure for maximum independent set.

2.3.1. Set covering problem

In the set coveting problem, define a k, p-exchange as follows: For all k-tuples in
a cover J*, if possible, exchange the k-tuple with a p-tuple (p < k) not in J*.

d*O

Fig. 14.

1Ic
1 f

Maximum independent set: construction phase.

G R E E D Y R A N D O M I Z E D A D A P T I V E SEARCH PROCE DURES 1 19

/'2 /'3 ~ ~

Fig. 15.
T T T

/:'7 Ps
1

�9 2

�9 3
�9 4

5

Set coveting: local search phase (cover {P3, Ps, P6}).

P~ /'2 Pa P4 /:'5 P6 /'7 P8
�9 1

�9 �9 �9 2

�9 �9 �9 �9 �9 3

�9 �9 �9 �9 �9 4

�9 �9 5

T T
Fig. 16. Set covering: local search phase (optimal cover {P4, P6}).

Consider the example in Figure 15 with cover J* = {P3, Ps, P6}. Applying the
2, 1-exchange that replaces the 2-tuple {P3, Ps} with the 1-tuple {P4} results in an
optimal cover J* = {P4, P6} depicted in Figure 16.

2.3.2. Maximum independent set problem

We next describe a k-exchange search procedure for maximum independent set
in the graph G = (V, E). The idea here is to take as input an independent set
S ___ V of size p and consider all k-tuples of vertices in `9, for a given parameter k,
0 < k < p. For each such k-tuple {v i i , . . . , vik }, apply an exhaustive search to find
a maximum independent set in the graph induced by the vertices of G not adjacent
to the vertices in the set S' = $ \ {v i i , . . . , vik }. If the resulting independent set N"
is larger than ,5, the set of vertices S' tO N" is an independent set and is larger than
S. The procedure can now be applied to the new independent set. This procedure
is given in Figure 17.

Consider the example in Figure 18, where a 1-exchange (Vl = a) is carried
out on the independent set {a, c}. There, the set S' = ,9 \ {a} = {c}, so the
exhaustive enumeration is done of the graph consisting of vertices {a, b, d} and
edges { (a, b), (a, d) }, resulting in the maximum independent set N" = { b, d }. Since
this set has size 2, the new larger independent set {b, c, d} can be built. Applying
the local search on this new independent set does not produce an improvement,
thus halting the procedure at this local minimum.

120 THOMAS A. FEO AND MAURICIO G. C. RESENDE

procedure local(V, E, S, k)
1 for each k-tuple {vii , . . . , via } 6 S
2 S' :=- S \ {vil , . . . , vik };
3 A := {w �9 v I (w, vd r E, Vv~ e s '};
4 Apply exhaustive search to graph induced by .4 to find A/';
5 i f lA/ ' l> k ~
6 S := S' U N';
7 local(V, E, S, k);
8 fi;
9 rof;
end local ;

Fig. 17. Local search pseudo-code: maximum independent set.

a

d

b

d
e

S : I d ~- {a, c} S*ew = {b, c, d}

Fig. 18. Local search example: maximum independent set.

2.4. EXPERIMENTAL RESULTS

To conclude this section, we describe experimental results of running GRASP imple-
mentations on the two classes of problems described in this section. The codes used
were implemented by Feo and Resende [12] for the set covering problem and Feo,
Resende and Smith [13] for the maximum independent set problem. The codes are
run on a single 150 MHz MIPS 4400 processor of a Silicon Graphics Challenge
computer. Both codes are written in Fortran and were compiled with the f77 com-
piler using flags -02 - O l i m i t 800. Running times were computed with the
system routine e time.

2.4.1. Set covering problem

Fulkerson, Nemhauser and Trotter [18] proposed a class of small, yet difficult set
covering problems that arise when computing the 1-width of incidence matrices
of Steiner triple systems. To illustrate a GRASP for set covering, we consider the
following instances from this class: A45, As t, A135, and A243. Figure 19 summarizes
some statistics for these problems. Of the four instances, only the smallest has a

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 121

Problem

A45
As1

A135
A243

Size
Columns/Rows

45/330
81/1080
135/3015
243/9801

Best Known
Cover

30
61
105
203

Optimal?
yes

unknown

unknown
unknown

Fig. 19. Experimental results: set covering problem statistics.

cover times
a size found

0.5 31 10
30 4

0.6 31 10
30 8

0.7 31 10
30 9

0.8 31 10
30 10

0.9 31 10
30 5

Fig. 20.

iterations cpu seconds
min avg max min avg max

5 42.2 iii 0.01 0.06 0.15
691 2641.5 4606 0.92 3.50 6.11

3 23.7 58 0.01 0.04 0.08
40 3111.5 6246 0.08 4.33 9.95
1 25.7 56 0.00 0.04 0.07

594 2982.3 7329 0.72 3.71 8.91

1 6.9 27 0.00 021 0.03
121 1276.0 3589 0.15 1.45 4.08

1 7.1 28 0.00 0.01 0.04
2799 7129.4 8919 3.27 8.38 10.34

Experimental results: GRASP solution statistics (A45).

known optimal solution. The GRASP was run with five values of the restricted
candidate list parameter a: 0.5, 0.6, 0.7, 0.8, and 0.9. For each parameter setting,
10 runs were carried out for each instance, varying the initial seed of the random
number generator. The local search phase consisted of only 1,0-exchanges, i.e., the
GRASP eliminated any superfluous columns.

Figures 20, 21, 22, and 23 summarize the GRASP runs for instances A45, A8I,
A135 and A243, respectively. The GRASP found the best known solutions for all of
the instances considered. Running times for the two smaller instances were less
than 10 cpu seconds in all but one run, while the longest run for the largest class
took 673.4 seconds. Varying the parameter a from 0.5 to 0.9 changes the behavior
of the GRASP from a more randomized to a more greedy procedure (a = 0 is a
purely random procedure, while a = 1 is purely greedy). In most instances, the
GRASP with the parameter value a = 0.8 is the best performer. For A135, a = 0.9
did slightly better.

2.4.2. Maximum independent set problem

For testing the GRASP on the maximum independent set problem, let us consider
the family of undirected random graphs G[vl,p. These graphs have IVI vertices,
and each edge from the set of edges on the complete graph on IV t vertices appears

122 THOMAS A. FEO AND MAURICIO G. C. RESENDE

cover times iterations
a size found min avg max

0.5 63 9 1 5.9 18
62
61

0.6 63
62
61

0.7 63
62
61

0.8 63
62
61

0.9 63
62
61

cpu seconds
min avg max

1 894 894.0 894
4 1 51.8 154

10 1 5.1 11
3 249 443.7 725
2 418 448.0 478

10 2 2.9 6
5 39 409.0 996
4 197 416.5 736

10 1 3.5 7
3 162 445.3 747
7 20 486.7 893

10 1 4.0 6
3 22 277.3 627
1 718 718.0 718

0.02 0.05 0.12
4.95 4.95 4.95
0.02 0.30 0.86
0.02 0.04 0.07
1.34 2.36 3.85
2.21 2.37 2.52
0.02 0.03 0.04
0.20 2.04 5.01
0.97 2.05 3.60
0.02 0.03 0.05

0.76 2.10 3.45
0.ii 2.24 4.08
0.02 0.03 0.05
0.12 1.33 2.98
3.42 3.42 3.42

Fig. 21. Experimental results: GRASP solution statistics (Aa).

cover times
a size found min

0.5 107
106
105
104

0.6 107
106
105
104

0.7 107
106
105
104

0.8 107
106
105
104

0.9 107
106
105
104

iterations
avg max

10 1 86.1 243
9 517 3532.0 8379
1 3787 3787.0 3787
0

10 2 42.5 143
10 863 2704.2 6330

1 5992 5992.0 5992
0
9 2 46.7 110

10 48 765.9 3149
3 1930 3087.0 3773
0
8 3 6.8 18
8 20 121.3 279

10 6 1835.6 5299
2 4635 5747.5 6860
9 1 3.2 6
9 15 51.0 107

10 1 790.3 2402
3 2651 5184.3 8807

cpu seconds
min avg max
0.07 2.00 5.58

11.64 79.84 186,74
86.26 86.26 86,26

0.09 0.98 3.12
18.52 59.92 159.25

125.44 125.44 125.44

0.08 0.94 2.19
1.00 14.67 59.83

38.19 60.46 74.06

0.09 0.16 0.35
0.37 2.16 4.84
0.14 31.18 86.89

90.33 102.75 115.16
0.06 0.10 0.15
0.28 0.87 1.78
0.06 12.84 38.55

42.55 80.97 135.63

Fig. 22. Experimental results: GRASP solution statistics (A135).

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 123

cover times iterations
a size found min avg max

0.5 206 8 10 23.6 76
205 10 8 344.6 1490
204 5 2430 2895.2 3988
203 0 - -

0.6 206 10 6 26.6 66
205 10 25 359.9 1406
204 2 1475 3520.0 5565
203 0 -

0.7 206 10 1 28.0 70
205 10 73 398.5 1070
204 4 2927 4527.5 6613
203 0 -

0.8 206 10 2 16.2 59
205 10 44 176.8 353
204 10 413 2125.4 5453
203 2 2581 3153.5 3726

0.9 206 8 2 38.8 148
205 10 2 414.4 1826
204 3 591 4347.0 7762
203 0 -

Fig. 23.

cpu seconds
min avg max

1.40 3.15 9.95
1.17 43.18 184.13

309.55 364.61 496.35

0.95 3.34 7.94
3.15 43.39 169.37

182.25 427.33 672.42

0.29 3.13 7.61
7.62 41.84 112.67

305.15 469.81 673.42

0.33 1.64 5.60
4.03 16.03 31.11

36.51 189.67 492.53
236.98 281.95 326.92

0.32 3.55 13.46
0.32 36.08 163.93

49.38 366.29 645.54

Experimental results: GRASP solution statistics (A243).

E(X14) -- 4.23 x 103 P(X14 --- 0) _< 0.02

E(X15) = 1.70 x 101 P(X15 = 0) < 0.18

E(X16) = 3.19 • 10 -2 P(X16 = 0) _< 1.00

E (X I r) = 2.18 x 10 -5 P(X17 = 0) _< 1.00

Fig. 24. Maximum independent sets in GlOOO ,5

in Glv I,p, independently of the inclusion of any other edge, with probabil i ty p. This
family of graphs has been studied extensively [3]. We consider here 100 instances

of r andom graphs with parameters [V[= 1000 and p = 0.5, i.e., the class G1000,.5.
Let Xk be a stochastic variable denoting the number of independent sets of size
k in an instance of Gt000,.5. Figure 24 shows values of the expectation of X~ and
bounds on the the probabil i ty that Xk = 0. The latter indicates that independent

sets o f size 15 are abundant in Glo00,.5, while sets of size 16 are rare. In the initial
set of runs, we search for a set of 15 or larger, and stop when such a set is found.
Then, in a second set of runs, independent sets of size 16 or larger are sought.

124 THOMAS A. FEO AND MAURICIO G. C. RESENDE

! a

g b

a

Fig. 25. Preprocessing for maximum independent set.

g h c g d f g b

condition on {b, f} condition on {b, c} condition on {c, f}

Fig. 26. Preprocessing for maximum independent set.

For these examples, we introduce a way to decompose the work for a GRASP.
The idea is to condition on favorable pairs of vertices being in the independent set,
and solve a series of smaller, easier problems (each contracted graph having about
250 vertices). We consider the 50 vertices having the smallest degrees, V~o~, =
{v~l, vi2, . . . , v~,0}. For all pairs vi, vj E Vto~, such that (vi, vj) r E, compute
a({vi, vj}), the number of vertices not adjacent to either vi or vj. The pairs are
ordered in decreasing value of a, and at most 400 pairs are kept for consideration.
The problems on the contracted graphs are solved in order, conditioning on the
pairs being in the independent set. Consider, as an example, the graph in Figure 25,
where we choose to condition on pairs of vertices from the set of vertices having
degree 2, i.e. vertices {b, c, f}. The pairs that we condition on are {b, c}, {b, f},
and {c , f} . For these pairs, we have cr({b,c}) = I{d,f,g}[= 3, cr({b,f}) =
l{ c,g, h}l = 3, and ~r({c,/}) = I{b, 9}[= 2. Figure 26 shows the contracted
graphs induced by conditioning on pairs {b, f} , {b, c} and {c, f} , along with the
maximum independent sets of each graph. Together, with the conditioned pairs, we
get the independent sets {c, f , g}, {b, c, f , g}, and {b, c, f , g}, of which the set of
size 4 is optimal.

In our experiments, for each conditioned instance, at most 100 GRASP iterations
are performed, using candidate list parameter c~ = 0.1. Local search is carried out
only if the independent set found in the 250 node graph is of size 11 or greater.
We use the k-exchange local search described in Section 2.3.2 with parameter
k = 2. Figure 27 summarizes the GRASP runs on the 100 instances of maximum
independent set problems on G1000,.5. The entries have been sorted in increasing

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 125

preproc seconds tuples examined GRASP seconds
instances min avg max min avg max min avg max

1-10
11-20
21-30
31-40
41-50
51-60
61-70
71-80
81-90

91-100

0.41 0.42 0.43
0.40 0.42 0.43
0.39 0.41 0.42
0.41 0.42 0.43
0.40 0.42 0.43
0.41 0.42 0.43
0.41 0.42 0.43
0.40 0.42 0.44
0.40 0.42 0.43
0.41 0.42 0.44

Fig. 27. Experimental results:

0.12 3.77
9.70 12.36

20.24 22.93
29.50 33.11
41.96 47.86
59.20 69.89
88.87 98.64

110.41 141.66
203.64 247.24
324.68 489.28

1 2.1 4 9.26
4 4.8 8 19.66
7 8.6 10 28.72

11 12.2 14 38.56
15 17.0 20 55.36
20 24.8 29 82.67
32 34.6 38 110.31
39 50.5 66 196.69
73 88.2 116 315.17

114 173.8 314 893.19

GRASP maximum independent set solution statistics.

order of running times and are summarized in sets of 10 runs, e.g., the first row
summarizes the runs for the ten instances with the fastest running times, the second
row for the second ten fastest times, etc. The table lists the minimum, average, and
maximum cpu times for setting up the 400 conditioning tuples (preproc seconds),
the minimum, average, and maximum number of tuples examined until a set of
size 15 or greater is found, and the minimum, average, and maximum cpu times,
in seconds, taken by the GRASP to find the independent sets.

Of the one hundred runs stopped when the GRASP found a set of size 15 or
greater, independent sets of size 15 were found in 98 instances and of size 16 in
two instances. In more than half of the runs, the GRASP took less than one minute
of cpu time to terminate. The code was run on the same instances to search for sets
of size 16 or greater. There, the code found the two size 16 sets found in the first set
of runs, along with another set of size 16, totaling three instances with independent
sets of size 16 out of the 100 tested. For those runs, the preprocessing times were
.42, .45, and .45 seconds; the number of tuples examined were 35, 16, and 76; and
the GRASP running times were 101.88, 319.39, and 217.77 seconds.

3. Applications

We now turn our attention to a number of GRASP implementations that have
appeared in the literature, covering a wide range of applications, including set
covering, production planning and scheduling, graph problems, location problems,
quadratic assignment problems, and problems in logic. Two industrial implemen-
tations of GRASP are also discussed.

3.1. SET COVERING

Feo and Resende [12] describe a GRASP for solving set covering problems that
arise in computing the 1-width of the incidence matrix of Steiner triple systems.

126 THOMAS A. FEO AND MAURICIO G. C. RESENDE

The construction mechanism as well as the local search strategy of that GRASP are
described in Section 2 of this paper. Computational results are described, where the
GRASP quickly produces best known solutions for all of the instances considered.

Bard and Feo [2] describe a unified framework in which product and process
demands can be related to manufacturing system requirements. The objective is to
determine, in a flexible manufacturing environment, how many of each machine
to purchase, as well as what fraction of the time each piece of equipment will be
configured for a particular type of operation. A nonlinear cost minimization model
is developed and is solved with a depth-first branch and bound routine that employs
a GRASP for set covering to find good feasible solutions. The solutions obtained
with the GRASP permit early fathoming and greatly contribute to the efficiency of
the algorithm.

Feo and Bard [9] use GRASP to solve a sequence of set covering problems in an
approach that renders an approximate solution to a minimum cost, multicommodity,
network flow problem with integral constraints for airline flight scheduling and
maintenance base planning. They demonstrate the procedure with data for the
American Airlines Boeing 727 fleet, and show that the new approach is a significant
improvement over current solution techniques.

3.2. PRODUCTION PLANNING AND SCHEDULING

Bard and Feo [1, 10] apply GRASP to computer aided process planning, specifically,
the selection of tools and cutting paths for milling metal on flexible manufacturing
machines. The underlying optimization problem is modeled as an integer program
and is solved by branch and bound. Lower bounds are calculated by means of
a Lagrangian relaxation technique. Feasible solutions (upper bounds) are found
by a GRASP applied to a specialized set covering problem. Overall performance
of the method, including quality of solutions and cpu requirements, is judged by
examining a wide variety of instances derived from actual manufacturing data.

Laguna and Gonzfilez-Velarde [29] consider the scheduling of parallel machines
in a just-in-time production environment. The optimization problem possesses a
weighted earliness penalty with deadlines for identical parallel machines. The
authors present a hybrid heuristic that combines elements of both tabu search and
GRASP methodologies, and uses a branch-and-bound postprocessor. They compare
the performance of their method with the modified Smith heuristic of Chand and
Scheeberger [6], concluding that their method succeeds in finding solutions that are,
on average, 10 percent better than those found by the modified Smith heuristic.

Feo, Venkatraman, and Bard [15] develop a GRASP for a single machine schedul-
ing problem with flow time and earliness penalties. The method compares favorably
with methods previously reported in the literature. A dynamic programming (DP)
algorithm yields optimal solutions to problems with up to 30 jobs. In a fraction
of the time required by the DP implementation, the GRASP code provides optimal

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 127

solutions to 238 out of the 240 instances tested, while providing solutions that are
extremely close to the optimal in the remaining two instances.

Feo, Sarathy, and McGahan [14] write about a single machine scheduling prob-
lem with sequence dependent setup costs and linear delay penalties. They develop
a GRASP which quickly finds optimal solutions to 20-job problems previously
reported in the literature. The method is favorably compared to a tabu search
implementation on instances ranging up to 165 jobs. The authors take advantage
of the mutation concept found in genetic algorithms to enhance the performance
of the local search phase of their GRASP implementation.

Klincewicz and Rajan [27] describe two GRASP heuristics to solve the component
grouping problem, a type of set partitioning problem that arises in a number of
manufacturing and material logistics applications. In computational results, based
on real manufacturing data, the GRASPs produce solutions having objective function
values within 4.3 to 9.5 percent (7.4 percent on average) of a lower bound based
on a combinatorial argument. Compared to previously used methods based on a
network flow heuristic [33], the first GRASP produced better solutions on all 12 test
problems, while the second GRASP produced better solutions on all but one.

Feo, Bard, and Holland [8] present a GRASP implementation for scheduling
printed wiring board assembly. The combinatorial optimization problem possesses
multiple machines, precedence relationships, start dates, due dates, capacity con-
straints, set up times, processing times, and resource constraints. A multicriterion
objective is considered that includes minimizing weighted tardiness, maximizing
revenue (weighted throughput), minimizing cycle times, and flowline balancing.
The GRASP is empirically validated in an industrial setting with over 70 process-
ing stations, 140 product types, 4500 components, 126 shifts, 49,000 boards in
wIP, and 142,000 boards on demand. The heuristic is shown to outperform rule
based methods used previously. This work highlights the ease and effectiveness
with which GRASP can be applied to extremely large and complex optimization
problems found in practice.

3.3. GRAPH PROBLEMS

Feo, Resende and Smith [13] describe a GRASP for finding large independent sets
on sparse random graphs. The construction and local search phases of that GRASP
are described in Section 2 of this paper. The GRASP is implemented in parallel
on a MIMD computer by assigning to different processors the different contracted
graphs induced by the conditioning-on-pairs strategy described in Subsection 2.4.2
of this paper. The efficiency (speedup divided by the ratio of processors) of going
from one to eight processors was, on average, 93.6 percent. The GRASP was tested
on graphs with up 3500 nodes and over 3 million edges and is compared with
implementations of simulated annealing, tabu search, and an exact method. The
GRASP found larger independent sets, and in substantially less cpu time, than the
simulated annealing implementation. GRASP was compared with the tabu search

128 THOMAS A. FEO AND MAURICIO G. C. RESENDE

code STABULUS [17] on three classes of random graphs, having 600, 1500, and 3500
vertices. The tabu search code was 1.6 times faster on the 600-node graphs, but
was 3.7 times and over 10 times slower on the 1500-node and 3500-node graphs,
respectively. On 600-node graphs, the exact method of Carraghan and Pardalos
[5] produced optimal solutions on all 25 instances tested, while the GRASP rarely
produced optimal solutions. However, to produce the certificate of optimality, the
exact method required about 40 times more cpu time than needed by the GRASP
to produce independent sets having one vertex less than the optimal size. For a
1000-node graph, the exact method failed to find an optimal solution in 10 cpu
days of computing, while GRASP quickly found probably-optimal sets of size 15 or
16 in all 200 instances tested.

Feo and Smith [37] offer a GRASP for coloring sparse graphs. The construction
phase builds one color class at a time by identifying maximal independent sets.
The local search phase uses a simulated annealing approach starting at a rela-
tively cold temperature. This starting condition keeps the search in the vicinity
of the constructed solution while allowing it to wander away from local minima.
The GRASP implementation performs well on a wide range of instances including
random graphs and graphs of known chromatic number.

Laguna, Feo, and Elrod [28] develop a GRASP implementation for the network
2-partition problem. The heuristic is conceptually simple and straightforward to
program. The GRASP is empirically compared to the Kemighan-Lin method [24]
which stood for over twenty years as the dominating heuristic procedure. Over
3500 instances are used to compare the running times and solution values provided
by the two methods. The instances include a wide variety of random and geometric
graphs, as well as smaller examples for which optimal solutions can be found via
branch and bound. The comparative study empirically confirms the effectiveness
o f t h e GRASP implementation.

3.4. LOCATION PROBLEMS

Klincewicz [26] compares tabu search and GRASP for solving instances of the
discrete p-hub location problem, a problem that has applications in airline and
package delivery systems, as well as in certain telecommunications network design
problems. In this problem, one is given an n-node graph and a matrix of internodal
traffic and is asked to choose p of the n nodes to serve as hubs, which are to be fully
interconnected. For all nonhub nodes, one must also determine which hub that node
is to be connected to, making it possible to route traffic between any two nodes in
the graph. The objective is to minimize the total cost of sending traffic between
demand pairs. Computational testing was carried out on real data for airline hub
design (n = 10, 15, 25, p = 3, 4) and a packet network design problem (n = 52,
p = 4, 10). The author concludes that while the tabu search implementation was
about twice as fast as the GRASP code in producing the best solution, GRASP found
solutions having the best known value more often.

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 129

3.5. QUADRATIC ASSIGNMENT PROBLEMS

Feo and Gonzzilez-Velarde [11] apply GRASP to a quadratic assignment problem
(QAP) that models the positioning of intermodal highway trailers on railcars.
The GRASP heuristic is used within a branch and bound scheme to provide optimal
solutions. The heuristic is observed to be extremely fast, and by itself, finds optimal
solutions to all problem instances furnished over a two-year period by Consolidated
Rail Corporation (Conrail).

Li, Pardalos, and Resende [31] propose a GRASP for the classical quadratic
assignment problem, where one wants to assign, at minimum cost, n facilities
(with interfacility flow demands) to n sites. The cost of assigning facility i to site
k and facility j to site I is f i , j �9 dk, l , where f i , j is the flow between facilities i and j ,
and dk,z is the distance between sites k and I. The GRASP was tested on 88 instances
of QAP, most of which are from QAPLIB [4], a library of QAP test problems. The
GRASP found the best known solution of almost all of the instances, and improved
on the best known solution in a few cases. FORTRAN subroutines of this GRASP are
described in [35].

3.6. PROBLEMS IN LOGIC

Resende and Feo [34] describe several GRASP implementations for the satisfiability
problem in logic. In the satisfiability problem one wants to find a troth assignment
to Boolean variables to make a given Boolean formula evaluate to true or prove that
no such assignment exists. The GRASPs tested attempt to find an assignment and are
not capable of proving unsatisfiability. The codes were tested on most satisfiable
instances of the benchmark collection of the Second DIMACS Algorithm Imple-
mentation Challenge [22] and compared with GSAT [36], a code that has recently
received much attention due to its ability to find satisfying truth assignments of
large formulae. The GRASPS found satisfiable assignments on all 114 instances test-
ed. The GRASPs were faster than GSAT in three out of the five problem classes tested.
Furthermore, GSAT failed to produce satisfiable assignments to several formulae
for which the GRASPs were successful.

3.7. INDUSTRIAL APPLICATIONS

GRASP has been directly applied in practice as part of two large scale decision
support systems developed and implemented by Optimization Alternatives, an
information systems development firm in Austin, Texas.

INSITES TM (Integrated Scheduling, Inventory, and Throughput Evaluation Sys-
tem) provides facility-wide planning and scheduling functions for printed wire
board assembly operations. The GRASP used in INsrrEs is described in Feo, Bard,
and Holland [8]. The success of this management information system at Texas
Instruments is discussed in Feo, Bard, and Holland [7].

130 THOMAS A. FEO AND MAURICIO G. C. RESENDE

OASIS TM (Optimization Alternatives' Strategic Intermodal Scheduler) controls
the logistics operations in an intermodal rail terminal. The system tracks all inven-
tory in the yard and directs parking activities to maximize the utilization of the
terminal's parking areas. It issues hostler and packer work orders through a radio
frequency (RF) interface to speed operations and handle greater volumes of traffic
with less equipment and personnel. It optimizes load plans for both trailers and
containers, and thus, improves railcar utilization. The GRASP found in OASIS is
used for optimizing the load plans and is based in part on the work of Feo and
GonzAlez-Velarde [11], discussed previously. OASIS is currently in use at several
Conrail terminals and will be deployed at all major Conrail and Union Pacific
intermodal yards by 1996.

4. Concluding Remarks

GRASP possesses characteristics found in and shared by other heuristic search
methodologies. Close analogies can be drawn to simulated annealing, tabu search,
and genetic algorithms. The implementations of these various approaches are cer-
tainly quite different in practice. However, they all share with GRASP fundamental
heuristic concepts that can be used to classify their operations. The next two para-
graphs give a terse description of simulated annealing, tabu search, and genetic
algorithms. The remainder of the conclusion offers several thoughts regarding a
classification schema for these and other heuristic methodologies.

Tabu search and simulated annealing contain local search procedures that
explore the neighborhood around a current solution for improvements to that solu-
tion. Each has the ability to remove itself from local optima in order to find better
if not optimal solutions. Simulated annealing uses a straightforward randomization
technique. Tabu search in its simplest form uses a short term memory strategy
to intelligently direct its search away from neighborhoods already considered.
Medium and long term memory strategies are respectively used in tabu search to
allow for search intensification and diversification with regard to a known set of
promising solutions.

Genetic algorithms (GA) apply crossover and mutation operations to a popula-
tion of solutions. Crossover mates two solutions in the population by combining
attributes of the solutions to form an offspring. The offspring is then mutated by
randomly altering a few of its attributes. The offspring is added to the popula-
tion if its solution value compares favorably with the other solution values in the
population, thus resembling natural selection in the theory of evolution.

Categories of fundamental heuristic concepts include: solution construction,
solution perturbation, procedure repetition and restart criteria, problem decom-
position or conditioning, and procedure stopping rules. For illustrative purposes
consider the category of solution perturbation. A local search mechanism, such as
a 2-exchange technique or a mutation operation found in a genetic algorithm, are
examples of solution perturbation. The basic principle is to move from one solution

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 131

pro cedure grasp ()
1 Inpu t Ins tance () ;
2 for Grasp stopping criterion not satisfied - .
3 Const ructGreedyRandomizedSolut ion (Solut ion) ;
4 for local search stopping criterion not satisfied --*
5 LocalSearch (Solut ion) ;
6 Updat eSolut ion (Solu t ion , Best Solut ionFound) ;
7 Mut at eSolut ion (Solution) ;
8 rof;
9 UpdateSolut ion (Solution,BestSolutionFound) ;
10 rof;
11 re tu rn(Bes t Solut ionFound)
end grasp;

Fig. 28. Adding mutation concept to GRASP local search phase.

to another. For each of the categories, a wide variety of mechanisms have been
devised and even combined to form hybrid techniques.

Guiding the design of mechanisms in each category are two goals. The first is to
find an optimum or near optimum solution. The second is to arrive at such a solution
with a minimal amount of computational effort. Given that most combinatorial
optimization problems are classified as intractable and have enormous solution
spaces, it is very often ineffective to apply the brute force technique of exhaustive
enumeration. Thus, one must strategically search for good solutions, biasing the
search to consider only a minuscule fraction of all possibilities.

Biases in heuristic mechanisms are sometimes referred to as intelligence. They
can be grouped as follows: Random or lexicographic bias - indiscriminate selection
of alternatives; Greedy or simple decent bias - selection based on the problem's
objective function; Memory bias - selection based on prior selections; Experience
or target bias - selection based on prior performance. Consider the following par-
tial illustrations. GRASP uses a greedy bias to guide the construction of each new
solution. Simulating annealing uses a random bias to perturb its current solution.
Tabu search employs a short term memory bias, while genetic algorithms possess
a subtle experience bias analogous to natural selection. Explicit examples of expe-
rience bias are also apparent in mechanisms employing the dynamic application of
target analysis.

GRASP and the other methods discussed herein have contributed enormously to
our ability to empirically find good solutions to otherwise unsolved instances of
practical combinatorial optimization problems. Fortunately, these methodologies
are not antithetical to one another. They each possess characteristics that can be
combined in an enormous number of ways yet to be explored. As an example,
consider the hybrid procedure, developed by Feo, Sarathy, and McGahan [14],
depicted in Figure 28. The framework is GRAsP-based, yet the mutation introduced

132 THOMAS A. FEO AND MAURICIO G. C. RESENDE

in Phase 2 is borrowed from the GA methodology. A future direction of research into
the design of heuristics should include an expansion of the classification schema
started here. The motivation for this work is abundant. First, it will improve our
ability to describe and define heuristic methodologies and allow us to conceptually
compare different approaches. Second, it will guide the enhancement efforts of
existing procedures that will lead to improved hybrid methods. And finally, it may
evolve into a theoretical framework capable of blossoming the currently limited
discipline of probabilistic analysis of heuristics.

References

1. J.E Bard and T.A. Feo. Operations sequencing in discrete parts manufacturing. Management
Science 35: 249-255, 1989.

2. J.F. Bard and T.A. Feo. An algorithm for the manufacturing equipment selection problem. IIE
Transactions 23: 83-92, 1991.

3. B. Bollob~s. Random Graphs. Academic Press, 1985.
4. R. Burkhard, S. Karisch, and E Rendl. QAPLIB - A quadratic assignment problem library.

European Journal of Operational Research 21, 1991.
5. R. Carraghan and RM. Pardalos. An exact algorithm for the maximum clique problem. Opera-

tions Research Letters 9, 1990.
6. S. Chand and H. Schneeberger. Single machine scheduling to minimize earliness subject to no

tardy jobs. European Journal of Operational Research 34: 221-230, 1988.
7. T.A. Feo, J. Bard, and S. Holland. Facility-wide planning and scheduling of printed wiring board

assembly. Technical report, Operations Research Group, Department of Mechanical Engineering,
The University of Texas at Austin, Austin, TX 78712-1063, February 1993.

8. T.A. Feo, J. Bard, and S. Holland. A GRASP for scheduling printed wiring board assembly.
Technical report, Operations Research Group, Department of Mechanical Engineering, The
University of Texas at Austin, Austin, TX 78712-1063, December 1993.

9. T.A. Feo and J.E Bard. Flight scheduling and maintenance base planning. Management Science
35: 1415-1432, 1989.

10. T.A. Feo and J.E Bard. The cutting path and tool selection problem in computer-aided process
planning. Journal of Manufacturing Systems 8:17-26, 1989.

11. T.A. Feo and J.L. Gonzfilez-Velarde. The intermodal trailer assignment problem. Technical
report, Operations Research Group, Department of Mechanical Engineering, The University of
Texas at Austin, Austin, TX 78712-1063, April 1992.

12. T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters 8: 67-71, 1989.

13. T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure for
a maximum independent set. Operations Research 42: 860-878, 1994.

14. T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine scheduling with sequence
dependent setup costs and linear delay penalties. Technical report, Operations Research Group,
Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712-
1063, January 1994.

15. T.A. Feo, K. Venkatraman, and J.E Bard. A GRASP for a difficult single machine scheduling
problem. Computers and Operations Research 1: 8, 1991.

16. M. Fischetti, S. Martello, and R Toth. The fixed job scheduling problem with spread-time
constraints. Operations Research 35: 849-858, 1987.

17. C. Friden, A. Hertz, and D. de Werra. Stabulus: A technique for finding stable sets in large graphs
with tabu search. Computing 42: 35-44, 1989.

18. D.R. Fulkerson, G.L. Nemhauser, and L.E. Trotter Jr. Two computationally difficult set covering
problems that arise in computing the 1-width of incidence matrices of Steiner triple systems.
Mathematical Programming Study 2: 72-81, 1974.

19. E Glover. Tabu search-Part I. ORSA Journalon Computing 1: 190-206, 1989.

GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES 133

20. E Glover. Tabu search - Part II. ORSA Journal on Computing 2: 4-32, 1990.
21. D.E Goldberg. Genetic algorithms in search, optimization and machine learning. Addison-

Wesley, 1989.
22. D.S. Johnson and M. Trick, editors. The SecondDIMACSAlgorithm Implementation Challenge:

Maximum Clique, Coloring, and Satisfiability. DIMACS Series on Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1995.

23. N.K. Karmarkar and K.G. Ramakrishnan. Computational results of an interior point algorithm
for large scale linear programming. Mathematical Programming 52: 555-586, 1991.

24. B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell System
Technical Journal 49: 291-307, 1970.

25. S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of Statistical
Physics 34: 975-986, 1984.

26. J.G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research 40: 283-302, 1992.

27. J.G. Klincewicz and A. Rajan. Using GRASP to solve the component grouping problem.
Technical report, AT&T Bell Laboratories, Holmdel, NJ, 1992. To appear in Naval Research
Logistics.

28. M. Laguna, T.A. Feo, and H.C. Elrod. A greedy randomized adaptive search procedure for the
2-partition problem. Operations Research 42: 677-687, 1994.

29. M. Laguna and J.L. Gonz~ilez-Velarde. A search heuristic for just-in-time scheduling in parallel
machines. Journal of Intelligent Manufacturing 2: 253-260, 1991.

30. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Traveling Salesman
Problem. John Wiley, 1985.

31. Y. Li, EM. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure
for the quadratic assignment problem. In EM. Pardalos and H. Wolkowicz, editors, Quadratic
Assignment and Related Problems, volume 16 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pages 237-261. American Mathematical Society, 1994.

32. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Prentice-Hall, 1982.

33. A. Rajan and M. Segal. Assigning components to robotic workcells for electronic assembly.
AT&T Technical Journal 68: 93-102, 1989.

34. M.G.C. Resende and T.A. Feo. A GRASP for Satisfiability. Technical report, AT&T Bell
Laboratories, Murray Hill, N J, 1994.

35. M.G.C. Resende, EM. Pardalos, and Y. Li. FORTRAN subroutines for approximate solution of
dense quadratic assignment problems using GRASP. Technical report, AT&T Bell Laboratories,
Murray Hill, NJ, 1994.

36. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard Satisfiability problems.
In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAL 92), pages 440-
446, July 1992.

37. S.H. Smith and T.A. Feo. A GRASP for coloring sparse graphs. Technical report, Operations
Research Group, Department of Mechanical Engineering, The University of Texas at Austin,
Austin, TX 78712-1063, January 1991.

